Sharpening attention through alpha and gamma oscillations

Monthly Neuroimaging Meeting Marseille, 21th of September 2017

Selecting information in a complex world

Attentional role of alpha and gamma oscillations

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing

stimulus-induced

Fries et al. (2015, Neuron) Varela et al. (2001, Nature Neuroscience) Jensen et al. (2015, TINS) Klimesch et al. (2007, BRR)

Alpha (10Hz)

Functional inhibition

Internally controlled

Phase under control?

Capilla et al.2012

Jensen, Gips, Bergmann, Bonnefond (2015, TINS) Klimesch et al. (2007, BRR)

Alpha (10Hz)

Functional inhibition

Internally controlled

Alpha (10Hz)

Functional inhibition

Internally controlled

Bonnefond and Jensen (2012, Curr. Biol.) Bonnefond and Jensen (2013, Comm. Int. Biol.)

MEG

Alpha (10Hz)

Functional inhibition

Internally controlled

Bonnefond and Jensen (2012, Curr. Biol.) Bonnefond and Jensen (2013, Comm. Int. Biol.)

MEG

Alpha (10Hz)

Functional inhibition

Internally controlled

Network with alpha phase adjusted

Bonnefond and Jensen (2012, Curr. Biol.) Bonnefond and Jensen (2013, Comm. Int. Biol.)

Alpha (10Hz)

Functional inhibition

Internally controlled

Is alpha phase topdown controlled?

NO

Attention and Temporal Expectations Modulate Power, Not Phase, of Ongoing Alpha Oscillations

Rosanne M. van Diepen¹, Michael X. Cohen¹, Damiaan Denys^{1,2}, and Ali Mazaheri³

YES

Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction

Jason Samaha^{a,1}, Phoebe Bauer^b, Sawyer Cimaroli^a, and Bradley R. Postle^{a,c}

Alpha (10Hz)

Functional inhibition

Internally controlled

- Three possible syllables:
- 'pi', 'ti', 'ki'
- 75% incongruent pairs
- 25% congruent pairs

Visual vs. auditory

Solis-Vivanco, Jensen & Bonnefond (submitted)

MEG

Alpha (10Hz)

Functional inhibition

Internally controlled

- Three possible syllables:
- 'pi', 'ti', 'ki'
- 75% incongruent pairs
- 25% congruent pairs

Condition*power*phase effect:

- > Fastest reaction time for good phase and low power
- ➤ Slowest reaction time for bad phase and high power

- Attend-visual, fast RT
- --- Attend-visual, slow RT
 - Attend-auditory, fast RT
- --- Attend-auditory, slow RT

Gamma modulation by attention

Alpha (10Hz)

Functional inhibition

Top-down controlled

Gamma (>30Hz)

Active processing

stimulus-induced

Change in gamma power, frequency and inter-areal synchrony with attention

Fries(2016, Neuron)

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing

stimulus-induced

Cross-frequency coupling

Gamma activity

Alpha activity

Osipova et al. 2008; Voytek et al. 2010; Spaak et al. 2012; Bahramisharif et al. 2013

Alpha (10Hz)

Functional inhibition

Internally controlled

Fries et al. (2015, Neuron)

Varela et al. (2001, Nature Neuroscience)

Jensen et al. (2015, TINS) Klimesch et al. (2007, BRR)

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing

stimulus-induced

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing

stimulus-induced

Time relative to alpha peaks Infragranular alpha

Phase dependent Alpha-Gamma correlation

During stimulus processing?

Spaak, Bonnefond, Maier, Leopold, Jensen (2012, Curr. Biol.)

Monkey

Alpha-gamma coupling modulation by attention Alpha (10Hz) **Gamma** (>30Hz) **Functional** inhibition Active processing Internally controlled stimulus-induced memory items distracter target K 1.1s Significant MI power > baseline power > baseline requency (Hz) requency (пz 100 100. 80 80 0 60 60 $80 \, \overline{\text{power}} < \text{baseline}$ $80 \overline{\text{power}} < \text{baseline}$ -80 -4040 -80 -4040 time (ms) time (ms) **MEG** Bonnefond and Jensen (2015, Plos One)

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing

stimulus-induced

A. Stimulus processing

Jensen, Gips, Bergmann, Bonnefond 2014, *TINS* Bonnefond, Kastner, Jensen 2017, *eNeuro*

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing

stimulus-induced

Gutteling, Bonnefond, Self, Jensen (in prep.)

Alpha (10Hz)

Functional inhibition

Internally controlled

Active processing

stimulus-induced

Framework

Alpha (10Hz)

Functional inhibition

Internally controlled

Gamma (>30Hz)

Active processing stimulus-induced

Bonnefond, Kastner and Jensen (2017, eNeuro)

Ole Jensen

Eelke Spaak

Tjerk Gutteling

Rodolfo Solis-Vivanco

