

lnserm

Institut national de la santé et de la recherche médicale

Fédération pour la Recherche sur le Cerveau

Amygdala and medial Prefrontal Cortex anatomo-functional dialogue in primates

C. Giacometti

Post-Doctoral Fellow

Stem-Cells and Brain Research Institute (SBRI) 18 av. du Doyen J. Lépine, 69500, BRON

Réunion Mensuelle de Neuroimagerie 16/05/2024

The AMG-mPFC network: why?

Plan

- 1 <u>Background:</u> AMG and mPFC and their homologies/differences between human and macaques
- 2 <u>Study 1</u>: Differential functional organization of amygdala-medial prefrontal cortex networks in macaque and human
- 3 <u>Study 2</u>: The impact of transcranial ultrasound stimulation of the AMG on the AMG-mPFC FC (preliminary results)

Human brain expansion

What are the consequences on the PFC/mPFC and the AMG?

Background

In the prefrontal cortex ?

Morphology:

(Barrett et al., 2020)

Morphology:

Volume Cortex White matter tracts

G Sulci primates

(Amiez et al., 2019)

G Sulci Differential organizations

Structure:

Precursors found in non-human

(Petrides & Pandya 1994)

* Layer organization of the cortex

6

In the amygdala ?

Their connectivity?

Structural connections: tractography (DTI)

white fiber bundles connecting AMG and mPFC comparable between macaque and human

(Thiebaut de Schotten et al., 2012, Folloni et al., 2024, preprint)

Background

Their connectivity?

MACAQUE – Microscopic scale

Ex-vivo tracers: Intricate structual connexions at the nuclei level

(Review: **Giacometti** et al., 2023, CRNEUR, based on Ghashghei et al., 2007; Sharma et al., 2020; Roy et al., 2008, etc.)

Their connectivity?

HUMAN – Macroscopique scale

Neuroimagery in vivo: Functional connections at the subdivision level

(Review: **Giacometti** et al., 2023, CRNEUR, based on Ghashghei et al., 2007; Sharma et al., 2020; Roy et al., 2008, etc.)

Background

AMG-mPFC network: problematic

MACAQUE: microscopic scale

"GAP" (Barron et al., 2021)

Rs-fMRI

□ In macaques, the majority of rs-fMRI and comparative studies are carried out when they are under anaesthesia: *anaesthesia effect?*

No comparative study on the complex functional relationships of the AMG-PFC network between macaques and humans: *is it comparable?*

HUMAN: macroscopic scale

Plan

- 1 <u>Background:</u> AMG and mPFC and their homology/differences between human and macaques
- 2 <u>Study 1</u>: Differential functional organization of amygdala-medial prefrontal cortex networks in macaque and human
- 3 <u>Study 3:</u> The impact of transcranial ultrasound stimulation of the AMG on the AMG-mPFC FC (*preliminary results*)

AMG nuclei and mPFC functional dialogue in humans and macaques

- 1) Whole AMG rs-fMRI study in anaesthetized macaque monkeys
- 2) No study of AM nuclei in macaque monkeys
- 3) No comparative study between humans and macaques on the functional relationships of AMG nuclei and mPFC regions

3T MRI scanner

TR= 1.5s Voxel size = 2.5 mm3 1 run of 400vol/subject TR= 1.8s Voxel size = 1.8mm3 12 runs of 400vol/subject

AMG nuclei and mPFC functional dialogue in humans and macaques

4 AMG nuclei (atlas:Tyszka and Pauli 2016; Hartig et al., 2020)

16 ROIs in the mPFC :

(subject-by-suject based on local anatomical landmarks

Amiez et al., 2019)

ventral to rostro-caudal
Area25 SROSp SROSm SROSa
Fork32 CgS11 CgS10 CgS9
CgS8 CgS7 CgS6 CgS5 CgS4
CgS3 CgS2 CgS1

vmPFC : 4 ACC: 4 aMCC : 5 pMCC : 3

AMG nuclei and mPFC functional dialogue in humans and macaques

- VMPFC - ACC - MCCa - MCCp

(Giacometti et al., 2024, ComBio)

AMG nuclei and mPFC functional dialogue in humans and macaques

(Giacometti et al., 2024, ComBio)

Take home message

 In humans, along the corpus callosum, we observed a u-shape pattern of FC between AMG nuclei, exception of CE, and mPFC charactherized by a negative correlations deep in the aMCC

Study 2

 In macaques, u-shape pattern concern all of the AMG nuclei with mPFC ROIs and is charactherized by a negative deep at the limit between vmPFC/ACC

Take home message

• A shift of the FC pattern between AMG and mPFC: ACC/vmPFC variability?

<u>Comparative study on medial PFC sulci organization:</u> Amiez et al., 2019

ACC/vmPFC and sulci organization variability between humans and macaques

Comparartive study on cortico-limbic white matter bundle: Folloni et al., 2024

Differences in the innervation of subgenual cortex across species

Plan

- 1 <u>Background:</u> AMG and mPFC and their homology/differences between human and macaques
- 2 <u>Study 1</u>: Differential functional organization of amygdala-medial prefrontal cortex networks in macaque and human
- 3 <u>Study 2:</u> The impact of transcranial ultrasound stimulation of the AMG on the AMG-mPFC FC (preliminary results)

Transcranial ultrasound stimulation (TUS)

- Non-invasive and reversible perturbation technique
- Associated offline or online with an experimental protocol
- **Possible mecanism**: ultrasound waves induce a mechanic force that trigger mecanosensible channel within the cellular membrane

Previous work in anaesthetized monkeys (Folloni et al., 2019)

Globally **decreases the functional connectivity** of the target region: TUS AMG (yellow), sham (blue), ACC TUS (yellow)

AMG TUS effect in awake macaque monkeys?

TUS on the AMG: effect on the AMG-mPFC network functional connectivity

How? Based on Folloni et al., 2019 protocol

<u>Session 1:</u> T1 structural can
4-6 fiducial markers positionned around the monkey headpost.
It allows to delimitate and identify
AMG localisation in space relative to each of the markers position.

TUS on the AMG: effect on the AMG-mPFC network functional connectivity

Session 2:

rs-fMRI + Offline bilateral stimulation of the AMG :

1) Calibration:

Localization in space of the monkey head (fiducial markers) and the stimulation material (transducer + region-specific coupling cone)

2) Target location and stimulation:

Guide by Brainsight software, the transducer is applied on the shaved temporal surface of the monkey head. Once target location is secure the stimulation is applied on one side and 5/10min after on the other side.

fMRI scanning session start 20-30min after stimulation

Macaque, n =2 10-8 runs of 400vol/subject TR= 1.8s, voxel size= 1.8 mm3

Transducer

Coupling Cone, filled in with degassed water

Stimulation: Duration: 40s Train of pulsed ultrasound

(240kHz every 100ms) = 30ms ON, 70ms OFF

Significance?

Behavioral significance of this functional connectivity pattern changes?

AMG-mPFC is an higly dynamic network charactherized by **a top-down/bottom-up balance** to react and adjust and/or regulate our behavior when facing a complex and uncertain environnement

This dynamic changes across developpement going from a "reactivity" state in childhood towards a more control state in teenagehood/aduldthood (Gee et al., 2022)

Hypothesis of a differential balance of top-down regulation and bottom-up reactivity within the AMGmPFC network between both species ?

<u>E.g.</u> Adult macaques *rhesus* are characterized by behavioral traits such as aggressiveness and impulsivity that are reduced following AMG lesions (Thierry 2010; Elorette et al., 2020; Kalin et al. 2004)
 > higher AMG reactivity? Reduce top-down regulatory process?

Aknowledgements

Supervisors

Fadila Hadj-Bouziane Céline Amiez

NEF Team (SBRI)

Delphine Autran-Clavagner Jérôme Sallet Emmanuel Procyk Charles Wilson Laura Vińales Julien Claron Valentine Morel-Latour

IMPACT Team (CRNL)

Audrey Dureux Sameer Manickam Gislène Gardechaux Manon Dirheimer

Host laboratory

Grants

Fédération pour la Recherche sur le Cerveau

CERMEP, Primage 3T imagery plateform

Franck Lamberton Danielle Ibarrola

Thank you for your attention !