Model-based analysis of whole-brain dynamics from fMRI: Applications to human cognition and neuropathologies

Matthieu Gilson

Chaire of Junior Professor – BraiNets

https://matthieugilson.eu

Institut de Neurosciences de Svstèmes

Universitat Pompeu Fabra Barcelona

Outline

Background

- Model-based analysis of fMRI: effective connectivity (EC)
 - marker of brain dynamics
 - combining anatomical and functional MRI data
 - interpretable markers
 - disentangling sources of variability
- Next steps
 - multimodal classification pipeline
 - representational learning

Activation maps versus connectivity approach

Criaud et al (2017) Behav Brain Res

Ongoing activity Functional connectivity (FC) brain region brain region

MarsAtlas, Auzias, Brovelli, et al.

Statistical analysis versus predictive statistics

Proxy for neuronal activity

Statistical analysis versus predictive statistics

Proxy for neuronal activity

Statistical analysis versus predictive statistics

Outline

- Background
- Model-based analysis of fMRI: effective connectivity (EC)
 - marker of brain dynamics
 - combining anatomical and functional MRI data
 - interpretable markers
 - disentangling sources of variability
- Next steps
 - multimodal classification pipeline
 - representational learning

Prediction pipeline for cognition and neuropathology

Gilson, ..., Deco (2016) PLoS Comput Biol; Gilson et al. (2020) Net Neurosci

Anatomo-functional modeling

Gilson, ..., Deco (2016) PLoS Comput Biol; Gilson et al. (2020) Net Neurosci

Anatomo-functional modeling

Effective Connectivity (EC)

- Captures brain dynamical state (condition-specific)
- Modulation of directional anatomical connections
- Reflects synaptic strength + local excitability + neuromodulation + ...

Comparison with Dynamic Causal Model (DCM)

Comparison with The Virtual Brain (TVB)

Comparison with The Virtual Brain (TVB)

Outline

- Background
- Model-based analysis of fMRI: effective connectivity (EC)
 - marker of brain dynamics
 - combining anatomical and functional MRI data
 - interpretable markers
 - disentangling sources of variability
- Next steps
 - multimodal classification pipeline
 - representational learning

Application to stroke patients

- fMRI scan + cognitive tests: memory, motor task, ...
- individual fit: 132 patients, 25 controls
- 300 ROIs, ~4000 EC/FC links as features
- 80%-20% train-test (stratified split)
- classifier: logistic regression

Classification patients versus healthy controls

chance level (shuffling surrogates)

Classification patients versus healthy controls

Informative EC links as cortico-cortical alterations

- EC: modulations in anatomical connections
- FC: change in correlated activity
- Many inter-hemispheric links/connections !

Prognosis of behavioral deficits

Prognosis of behavioral deficits

Interpretation in terms of cortico-cortical reconfiguration

Informative EC links

Interpretation in terms of cortico-cortical reconfiguration

Interpretation in terms of cortico-cortical reconfiguration

Outline

- Background
- Model-based analysis of fMRI: effective connectivity (EC)
 - marker of brain dynamics
 - combining anatomical and functional MRI data
 - interpretable markers
 - disentangling sources of variability
- Next steps
 - multimodal classification pipeline
 - representational learning

Sources of variability: across sessions, conditions (tasks), subjects, ...

Similarity across resting-state sessions

Capture desired heterogeneity while discarding "noise"

- Signature for conditions
- Generalize across subjects
- Ignore session-to-session variability

Capture desired heterogeneity while discarding "noise"

- Signature for conditions
- Generalize across subjects
- Ignore session-to-session variability

"Orthogonality" of signatures

Pallarés, ..., Gilson (2018) Neuroimage

Strong bias by individuality

ARCHI social, Thirion et al (NeuroVault)

Strong bias by individuality

ARCHI social, Thirion et al (NeuroVault)

Take-home messages from past work

- Anatomo-functional model: balance between predictability and interpretability
 - EC provides robust subject- and task-specific signature
 - informative EC connections correspond to (putative) anatomical connections
- Difficult to generalize across subjects in complex task/condition environment
- Spatio-temporal structure of fMRI signals matters
- Does EC reflect propagation of neuronal activity? Proxy for information processing?

Outline

- Background
- Model-based analysis of fMRI: effective connectivity (EC)
 - marker of brain dynamics
 - combining anatomical and functional MRI data
 - interpretable markers
 - disentangling sources of variability
- Next steps
 - multimodal classification pipeline
 - representational learning

Ongoing projects: BraINT + NEMO; sodium MRI

Function

- A Lefrère
- G Auzias
- R Belzeaux
- C Deruelle
- M Szinte
- J-L Anton
- J Sein
- **B** Nazarian
- G Masson

Ongoing projects: BraINT + NEMO; sodium MRI

100

120 140

160

A Lefrère

G Auzias

R Belzeaux

C Deruelle

M Szinte

J-L Anton

J Sein

B Nazarian

G Masson

EC

Function

Sodium maps

W Zaaraoui A-M Grapperon

Ongoing projects: BraINT + NEMO; sodium MRI

Classification pipeline

UMR 7020 📕

Ē

- Small data: NEMO (patients)
- BraINT (ctrl)
- "Big" data: Human Connectome Project (ctrl)

- Small data: NEMO (patients)
- BraINT (ctrl)
- "Big" data: Human Connectome Project (ctrl)

Thank you!

