Comparative primate neuroimaging and human brain evolution

Erin Hecht, Ph.D.

Center for Behavioral Neuroscience, Georgia State University Yerkes National Primate Research Center, Emory University

Collaborators & Support

Dietrich Stout

Lisa Parr

Todd Preuss

Lauren Murphy

Jim Rilling

David Gutman

Mar Sanchez

Thierry Chaminade, Guy Orban, Bruce Bradley, Lee Cooper, Bill Hopkins, Anna Kukekova, Marc Kent, Sharleen Sakai, Jeromy Dooyema, Olivia Zarella

The Wenner-Gren Foundation

 $\frac{\text{JOHN TEMPLETON}}{\text{FOUNDATION}}$

NIMH NRSA F31MH086179-01
Wenner-Gren Dissertation Fieldwork & Osmundsen Initiative Grants
Emory Center for Systems Imaging Pilot Grant
NIMGS T32 GM008605
Leverhulme Trust F/00 144/BP
The Templeton Foundation 40463
NSF IOS 1457291
NSF NCS 1631563

Why comparative neuroscience?

- 1. Understand human brains in an evolutionary context
- 2. Unique aspects of human brains \rightarrow unique disease manifestations
- 3. Evolved variation is a source of structure-function information

How to study how our brains evolved?

- 1. Comparisons with living primates
- 2. Plasticity & activity in response to evolutionary challenges

Primate neural systems for observing others' behavior

Experimental and field studies indicate that whereas many primate species can copy the <u>result</u> of observed actions (EMULATION), humans are unique in showing a strong bias toward also copying the <u>specific methods</u> (IMITATION)

Probably crucial for social transmission of complex, hard-to-learn behaviors

How does the chimpanzee brain respond to simple observed actions?

FDG-PET

Execution

Transitive observation

Intransitive observation

For all of these conditions, chimp activation was overwhelmingly frontally-focused. This differs from human fMRI studies.

Transitive Observation

Intransitive Observation

¹ Molenberghs et al (2012). Neurosci Biobehav Rev 36(1):341-349.

² Caspers et al (2010). Neuroimage 50(3):1148-1167.

Direct FDG-PET comparison with humans

More bottom-up perceptual activation in humans Chimp activation largely focused in DLPFC

Diffusion tensor imaging (DTI)

White matter connectivity differences underlying gray matter activation differences?

Connections with object-sensitive inferotemporal cortex

Regions that were more sensitive to observed action in humans also show stronger white matter connectivity.

The "core" action-perception circuit

Virtual *in vivo* dissection of the SLF Group composite tractography

SLF I 📙 SLF II 📙 SLF III

Virtual *in vivo* dissection of the superior longitudinal fasciculus

Many aspects of connectivity were similar, except...

Extension of SLFIII into anterior IFG in the human right hemisphere

Inferior frontal cortex: Higher-order action representation

- Complex, hierarchically-structured actions¹
- Higher-order action planning²

¹ Koechlin E, Jubault T. Neuron. 2006 Jun 15;50(6):963-74.

Increased integration
between cognitive control &
detailed visuo-motor
processing

Inferior parietal cortex: Details of movements in space and time

- Relationships between body parts and objects in space³
- Proprioceptive feedback related to motor movements and object manipulation⁴
- ³ Rizzolatti et al (1997) Curr Op Neurobiol 7, 562-567
- ⁴ Rozzzi et al (2008) Eur J Neurosci 8, 1569-88

Hecht et al. (2015). Neuroimage 108:124-37

Petrides & Pandya (2009) PLoS Biology 7(8):e1000170 Mishkin & Ungerleider (1982) Behav Brain Res. 6 (1): 57–77

² Badre & D'Esposito (2009) Nat Rev Neurosci 10, 659-669

Another skill that requires top-down/bottom up visuomotor integration: mirror self-recognition

Neural predictors of self-recognition in chimpanzees

Right-lateralization of SLFIII white matter tract core

Rightward asymmetry of SLFIII's gray matter terminations in Broca's area

Visible prefrontal extension of SLFIII in chimps who recognize their own reflection

But complex technological culture emerged <u>after</u> our divergence from chimps...

Neural adaptations for tool use likely emerged during the Paleolithic

Unfortunately, brains don't fossilize

2. Brain <u>changes</u> during the acquisition of Paleolithic stone toolmaking

Which neural systems are forced to undergo change?

Subjects learned to produce Paleolithic stone tools using archaeologically-attested methods

2 years of intensive training

The regions that showed structural change overlap with regions that have been previously found to activate during Paleolithic stone toolmaking¹⁻³

