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A few reflections on resting-state data

* Reliability across and within individuals
* Population neuroscience : e.g. Biobank; PNC; ABCD
* Precision neuroscience : Midnight scanning club & MyConnectom
=> Necessitates a certain amount of “good data” ( 17 min)
—> Region dependent

RSFC reliability exhibits a consistent spatial topography across subjects
MSCO1 10 \ MyConnectome

Mean pairwise session correlation (r)

Dosenbach talk (New Approaches for probing neurobehavioural basis of development; Gordon poster T613



A few reflections on resting-state data

* Marker of experience dependent plasticity

Stronger age effect in High SES youth

Age x SES effects on regional
clustering coefficient

Thresholded to show significant re-
gions in red (p_..< 0.05).

FDR

SES

~ Low
High

Clustering Coefficient
0.17 0.19 0.21 023 0.25

0.50

10 IS 20
p-values Age (years)

Daniele Bassett, Keynote; Ursula Tooley, Lifespan
Development; session; poster T454

Change in M1 rsFC after 2 weeks of
wearing cast

Somatotopy +
30 min daily RSfMRI for 64 days

D Newbold; Learning and Memory session



A few reflections on resting-state data

* Linked to task-based patterns of activity

A two-way relationship between task
and intrinsic brain activity

-

Wiy
OHBM

y"’

Maurizio Corbetta, LOC

Lewis ot al. PNAS 2009.
sarre ot al. PNAS 2012: Statistic al
Kim et al. Ceretral Cortex, 2017 Leaming




A few reflections on resting-state data

* Validation with retrograde tracer mapping

Comparing Functional Connectivity (FC)

with Anatomical Tracers
(Collaboration between Van Essen, Kennedy, & Hayashi labs)

or evaluating methods to estimate anatomical connectivity from FC:

in 31 macaque cortical areas
0 anesthetized macaques

. A platform f
« Retrograde tracers
. Functional connectivity from 3

78
=5 \\ -

-

David Van Essen ;
Recent advance in
High correlation (r=0.59) betw nF "FC ponerThess.
s i g 78 etween FC Low correlation (r=0.06) between FC Poster Th696

ea 7B injection/seed and tracers for area 7B injection/seed




Non-invasi

In-Vivo Human Brain (mcH Adult Diffusion Dataset)

Cytoarchitecture Myeloarchitecture
Nissl staining Myelin staining

Marco Palombo", Dani
Lo CRERVESERERTEYe ACQUISITION PROTOCOL

2Champalimaud Neurosciend Soma density map
MEEEEEEIEERES | |\ = 25 healthy subjects (age 25-35)
PGSE @ 3 T (Siemens/Connectom)
TE/TR = 57/8800 ms

O/A=13/22 ms

6 b values =0 — 10 ms/um?
Directions: [0, 64, 64, 128, 256, 256]
Resolution: 1.5 x 1.5 x 1.5 mm?

PROCESSING

Neurite density map

CURRENT MODEL OF E

corps
tion de

MRI voxel composition

fsprv-:-re

Motion and eddy current correction with FSL
Denoising with MRTrix
Myeloarchitectur Gibbs ringing correction
faicks < neurite den.  Voxel-wise fitting of the 3-compartment model
Dgiicks % intra-neurite vi USing custom Scripts in MATLAB
Parcellation in Brodmann areas and surface
extraction by FreeSurfer

Model parameters

Pour des cellules
100um (macro et

20ms et b>>500C  cytoarchitecture
Average soma density map on cortical surface (N=25)
0.65

4 - primary motor area (anterior)

6 - pre-motor area

44 - Broca's area (pars opercularis)
45 - Broca's area (pars triangularis)

1- somatosensory area

2- somatosensory area
3a - somatosensory area

R e o I

v A ool 1090

3b - somatosensory area



A new sulcal landmark in human

Jacob Miller
prefrontal cortex

Historical

contention ‘::Ig[:l:'diln:g the definitior
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Anatomy and Function of Four New
Cytoarchitectonic Areas in the Human
Lateral Orbitofrontal Cortex

Magdalena Woitasik!, Sebastian Bludau?,
Simon Eickhoff3-#, Hartmut Mohlberg?, Svenja
Caspers?>, Katrin Amunts!-2

Figure 2: Maximum probability map of the IOFC areas Fo4 — Fo7 and adjacent histologically
delineated areas.

Ex;‘cit/workipg memory \ : / / Reward processing

& sensation of touch

- i - ‘ ! -
M!amng of words, pain ' \ reward processing

Figure 1: Probabilistic maps of area Fo4 - Fo7 projected onto the white matter surface of the MNI reference brain in combination with their
probable functionality investigated through the BrainMap database. Location of respective areas ranging from a high (red) to a rather low (blue)
probability.




INSTITUTE Rogier Mars team : K. Bryant, N. Eichert, L. Roumazeilles

COMPARATIVE ANATOMY ACROSS PRIMATES

et i . Cross-species cortical alignment identifi
“l;:>::”|’: ) 'll'“: I"‘:"" = .. DOND of neuroanatomical reorganization in hi
/ I Prnmates J <

: pib % Nicole Eichert!, Emma C. Robinson?, Katherine L. Bryant®, Saad
hi2, Rogler B, Mars, Ph Longchuan Li*, Kristine Krug®, Kate E. Watkins' &
" Centre for wm.w.m Neuroimaging, University of Oxdord *King's College London 'O
‘and Bohaviow, Nimegen Emory :

Rationale and Background ] in Huma ns,

Diferences in brain organization can come in many forms and dissociating
them s challenging’, Cortical expansion and relocation can affect the
connections of brain areas. But this situation is distinct from the scenario in
which a tract has invaded new cortical territory. We developed a

that allows one to test among different forms of cortical reorganization by
registering brains together into a single shared coordinate system.

cortical areal expansion leading to
areas cortical relocation

_ Temporal lobe':
b primates
* Involved i high level

ancestra : | INTRODUCTION |  Dehaviours (uniquely
state ‘  Cortical expansion
connecti 3
pattern cortical expansion .

MaLF
IFOF  1LFiat
WF g

e n
»
" vaciography
METHODS (1): | MdLE. IEOF,
Reconstruction ILF, AF
of thetracts | & Fromone

‘waypoints.




Human > chimps Human > macaque

Connectivity blueprint (Mars, 2019)

_ Where
I II Il Il connectivity
TR 1 ol ] differs ?

Macaque Chimpanzee Human

@ S N B. MTG, ITG, IPL, SPL
ntral PFC, Ventral PMC, STG

areas alone provide a good
hosterior, temporal and parietal

/ rcsesiacnmere Expansion induced repositionning connections

@ /@ Maybe additionnal factors for language streams

* 'f critical myel
across specig

actor of brain reorganization, in

Mostly driven by temporal lobe AF invasion

“ Probabilistic  MdLF

F ILF

——————————— tractography of
| METHODS (1): |  MdLF, IFOF,

\! Reconstruction | ILF, AF

| of the tracts [RECuEt.
seed to two

waypoints

(ant and post)

i Expansion
f dependant or
independant ?

IFOF more lateral
subdivisions




Oral session: New approaches for probing the neurobehavioral basis of development

7T MRSI evidence for changes in GABA/GIlu ratios
through adolescent development

Beatriz Luna

Adolescence = Critical period plasticity — Balance shifting between excitatory Glutamate and inhibitory GABA

7T Magnetic Resonnance Spectroscopy Imaging
aquisition:

e 7110to 29 year olds

* QPASA (quantitative partial aquisition slice alignment):

defined slice within scan on to participant’s native space
on MPRAGE to position MRSI aquisition

Results:

» Age related changes in GABA/Glu ratio
* Association between differences in Nt ratio and working
memory

+poster M414



Representational Similarity Analysis

* Matrice cérébrale  Comparaison avec difféerentes matrices
s ity théoriques

fffff ding pattern (Representational
Dissimilarity Matrix, RDM)

— . =g = -
- Tk o EsEegist N
£ 1 pré ‘I PESEER8 43 ‘
Z W e e "
: ) — di snml ty Stroke
< Bomb . .
— . Rifle 1 g
Z i aad | -
2 e i B
< d wer ary B_E "
o Cake 5] Distributed lexical Association-based Experential affective

spa'e = : ‘ Sweet representation (RDM) representation (RDM) representation (RDM)

Montefinese ; T271

uuuuu

» Pour une région

» En searchlight pour tout le cerveau > Régions dont I'activité est
corrélée avec différentes

matrices.

Poyo Solanas ; M310




Representational Similarity Analysis

Une réorganisation du cortex moteur
chez les amputés?

ﬁ“"‘”’“'"’“‘ Hand ROI Two-Handed Controls (n=7)
Face part vs. Rest

iate maps initially at z>3.1; cluster corr. p <.05.
Hand RO outlined in black.
Example participant.

Y T R TR TR T
Face ROl in Non-Dominant
Hemisphere

Wiverz>79
Wronez> 122 Dominant Hand hemisphere

Deprived Hand ROI Congenital One-Handers (n=6)
= Face part vs. Rest
All univariate maps initially thresholded at z>3.1; cluster corr. p <.05.
Hand ROI outlined in black.
Example participant.

o a2 g e

[
Deprived Face ROI

W roeneas =259
[Jrcse«z>58

Deprived Hand hemisphere Wips=z>59
Wwongw=2>75

Intact Hand hemisphere

Root ; W448

Des régions qui codent les
émotions de facon amodale?

Representational o .
Dissimilarity Matrix, Multidimensional scaling
ordered by stimulus type of beta values

i § § $OOOO

[~ -y P

Si région décode émotions
de facon amodale :

Multidimensional scaling
of beta values

° :dim% & & &

COOOM A vawe o w

diml

Vaessen ; M294

Quelles sont les relations entre
sensoriel entre moteur ?

Articulatory RDM  Acoustic RDM high

Ayrerunssi(y

low

Motor ROIs Somatosensory & auditory ROIs

Tian ; T346

Articulator RDM
- e
B saex
e

D No significant

Acoustic RDM




Beyond Predictive Processing DONDERS

fMRI pattern decoding reveals active inference in early visual cortex

TITUTE

Sebo Uithol', Katherine L. Bryant', Ivan Toni', Rogier B. Mars '?

Donders Institte, - Nijmegen, ;o
— INTRODUCTION
Early visual areas are classically assumed to process retinal input
in a primarily stimulus-driven way. Predictive processing ap-
proaches (Friston & Kiebel, 2009) depart from this passive view
by positing that activation in early visual areas is the result of
top-down predictions and error signals. Enactive approaches to
cognition (Hutto & Myin, 2013) go even further and posits that
the visual system’s primary role is coordinating the interaction
between the organism and the environment, and predict that
task-properties will show up in the activity of the visual system.

r— DESIGN

26 participants performed a simple animal-recognition task in a
3T MRI scanner. They were asked questions about an upcoming
picture (see Figure 1). These question were either at a basic level
(e.g. “Is this a frog?™), or a superordinate level (“Is this an aquat-
ic animal?”) See Figure 1.

sthisa frog

— ANALYSIS

A multivariate analysis (Haynes, 2006) was performed to decode
dogs and frogs in a leave-one-run-out procedure (Figure 2).

Alternatively, a classifier was trained on the questions (dogs vs
frogs, and tested on the images (and vice versa; Figure 3).

“Is this a frog?” 5
‘x

“Is this a dog?”

Finally, we decoded the Question level (basic-level vs. superor-
dinate) at the time of viewing the images.

entre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom

— RESULTS 4

Figure 4 shows the decoding maps (p<0.001, FWEc) resulting
from a searchlight analysis. a) Dogs vs. Frogs (basic level). Clas-
sification extends anteriorly along the right fusiform gyrus; b)
Predictions: classification is confined to the V1 and ¢) Levels.

a b c

x=14 X=14 X=-a9 0

The Prediction analysis (b) shows that participants anticipate up-
coming perceptual input. The overlap in V1 with the Levels ana-
lysis (¢) suggests that anticipation is not a ‘passive’ prediction,

but tailored to the task Additionally, the basic-level, super-

ordinate level, and cross-level de-
coding accuracy in V1 is compared
in an ROI analysis (Figure 5). Only
basic-level decoding is significantly
above chance (p<0.05, corrected for
multiple comparisons). Finally, to
check the effect of ‘temporal bleed-

basic super cross ing’ the questions were cross-valida-
dated with the gray screen between questions and images. No
above-chance classification was found, ruling out this explana-
tion.

decoding accuracy

— CONCLUSIONS
Together these findings suggest that early visual areas are not
processing visual input in a neutral or passive way. Rather their
activation seems to be the result of anticipatory, task-driven pro-
cesses, constituting an active engagement with the environment,
This is surpasses most predictive coding theories, and is in line
with enactive approaches to cognition, and could estend multiple

— REFERENCES

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for
intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-179. htp://doi.org/10.1016/
J4i€5.2010.01.004

Friston, K. J., & Kiebel, S. (2009). Predictive coding under the free-cnergy principle. Philosophi-
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doiorg/10.1038/33531120
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Is this a dog?

Is this a frog?

Alternatively, a classifier was trained on the questions (dogs vs
frogs, and tested on the images (and vice versa; Figure 3).

“Is this a frog?”

Searchlight MVPA analysis
e activity @question predicts activity @image
=> top-down predictive coding in V1

 PROBLEM? - fixed ISI
= activity @question does not predict activity @ISl

NB. 25 trials per condition!



Oral session : Mapping sensation perception and attention

The Temporal Dynamics of Neuronal Responses in Human Visual Cortex

Iris Groen

—~ 0 o M1 \/1 br . 3 | —
E 1l = U1 G Oadbang time Course
=
5 =1 2 wm . e
S 67 @ 67 M 510 | l
'8 34 [ o g (1 U\\ L L =
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2 3 Tite 0 ELG L
© 267 | s o7 ML | B
S s 1 smM__Tn s I\ [\r — Unesr model
134 ms pulse [ ] J\‘\._ l\ ,\ _ Dynamic :

odel
Zhou et al,, 2017 0 oo
(Zhou et al., 2018)

* Question : How does the brain transform visual inputs into dynamical cortical responses ?
* Technique : Electrocorticography (ECoG)

ECoG data Dynamic
V1 electrodes normalization model
(n=6) predictions

vi

1 13 € 134 X 33
/ Vad
K 4

Poster T 875

- Dynamics of visual responses show systematic, non linear modulations by the temporal structure of the input.

- A computational model predicts these dynamical response properties. (Jonathan Winawer)



fMRI : The Global Signal Strikes Back

sub-10492 sub-10356 sub-10376
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neurosciences

fMRI : The Global Signal Strikes Back

1 compute
distances

voxel
voxel

time voxel

idenﬁfy outlier
WSD using

clustering 4

I

core

regressor

estimate fiver .:u:‘c'-;
WSD

Fig. 3. An iteration of DICER involves using clustering to identify voxels involved in a WSD, and then estimating the WSD regressor as an adjusted mean. We
show: A CO carpet plot for an example UCLA control participant, Subject 10376. B Upper triangle of the pairwise distance matrix, 12;; = 1 — |ry; . from low D ; (black) to
high 1, ; (white). C dbscan is used to estimate a diffuse common signal, or WSD, and label the core and reachable voxels that contribute to it. D A regressor is estimated
from core and reachable voxels, after flipping the sign of voxels that are anticorrelated to the cluster center, as the adj-mean. This procedure is repeated until either no WSDs

are identified, or a maximum number of iterations, k.,

Centre IRM-INT @CERIMED

ax = 0, is reached.

Cs—¢rimed

Aquino & al
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neurosciences

fMRI : The Global Signal & Physiology

respiration belt
signal (a.u.)

Centre IRM-INT

Default-mode network correlations

@CERIMED

Chen, Rubinov & Catie Chang

S RMN 20 / 06 / 2019
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fMRI : The Global Signal & Physiology
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“Resting- State” Time-Varying Functional Connectivity

MODEL FITTING AND
MODEL INVERSION

d_.r
dt
o

AN

DYNAMIC
BIOPHYSICAL MODELS
—

f(=)

TVC ESTIMATION (e.g. SLIDING WINDOW)

BOLD TIME SERIES

[ P |
[ RPN
[
oot iy A by |
PPomerr it ot e
o T et ]

Signal intensity

- voxels
- parcels/ROIs
components (e.g ICA)

OTHER TVC METHODS

(e.g Hidden Markov Models,
time-frequency approaches)

MODELING OUTPUTS

- simulated fast time
scale neural activity

- model parameters
(e.g. E/l coupling)

- system dynamics
(e.g flows, attractors)

BRAIN STATES

f

|

| Lince
i .

Correlation

2

0
0.2%
0.30
0.35

0 10 20 30 40 50 60

Time (TR)
ALL INDIVIDUAL
CONNECTIONS CONNECTIONS

WHOLE-BRAIN TVC

CLUSTERING
(e.g k-means)

TVC METRICS

- tests for “dynamics” (vs. null)

- mean, variability of FC time series

- relationship to other concurrently
recorded measures (e.g. arousal)

-

NETWORK SUMMARY METRICS

- mean connectivity

- patterns of connectivity

- global properties (e.g. modularity)
- regional properties (e.g. centrality)
- temporal network measures

BRAIN STATE SUMMARY METRICS
- tests for “dynamics” (vs. null)
- transition probabilities

Centre IRM-INT

| , KR
M v !
STATE A STATE B STATE C
@CERIMED e

- switching rate
- state occupancy and dwell times

RMN 20/ 06/ 2019
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PROGRAM
Thursda
9h

20.30h

Friday

9h
9.30h

10.30h
12h

13-20h

Saturda

9h
9.30h

OHBM 2019 Hackathon

y 6 June 2019

Check-in & breakfast
Welcome and introduction
Ignite talk: "A Brainhack carol.
The Ghost of Hackathons Past: Pierre Bellec"
Project pitches
Lunch
Hackathon /
TrainTrack: Best practices in

open source development
TrainTrack: Reproducible Science I
Social at Annalemma

7 June 2019

Breakfast
Ignite talk: "A Brainhack carol.

The Ghost of Hackathon Present: Katie Bottenhorn"

Hackathon /

TrainTrack: Reproducible Science II
Lunch

Hackathon

y 8 June 2019

Breakfast

Ignite talk: "A Brainhack carol.

The Ghost of Hackathons Future: Satrajit Ghosh"
Hackathon

Lunch

Hack & Project summaries

- S —~
- 4;,—— 9 a
PROGRAM TrainTrack, tentative, see here for live updates!

Session 1: Best practices in open source development
Thursday 13:00 - 16:00 Options include:

13:30-15:00 Intro to Git/GitHub (ReproStaff) "

15:00-16:00 Introduction to testing and Continuous Integration (Dorets

16:00-17:00 Available! ’,//D
P

Session 2: Open and Reproducible Science (Part 1) 7~
Thursday 17:00-20:00 Options include:

17:00-18:00 DataLad - Everything you ever wanted to know, bdi;Were
afraid to ask... (Yarik Halchenko/Satra Ghosh)
18:00-19:00 Containers: Using docker for open & reproducible science
- an introduction (Peer Herholz/Dorota Jarecka)
19:00-20:00 Available!

Session 3: Open and Reproducible Science (Part 2)
Location: Palazzo Montemartini (Largo Giovanni Montemartini, 00185 Roma RM)

Friday 10:30 - 15:30. Options include:

10:30-11:30 Interactive Introduction to C-PAC (Anibal Solon)
11:30-12:30 Binder and NeuroLibre! (Loic Tetrel)

Lunch!
13:30-14:30 ReproIn - The ReproNim image input management system
(Yarik Halchenko/Satra Ghosh)

14:30-15:30 Teaching an 0ld BIDS New Tricks - Semantic Markup of
BIDS data (David Keator/Jeff Grethe)

A R




OHBM 2019 Hackathon

https://github.com/ohbm/hackathon2019/issues?

page=2&q=is%3Aissue+is%3Aopen

https://ohbm.github.io/hackathon2019/

https://github.com/




Brainlife — network neuroscience

https://brainlife.io/

https://wwb5.aievolution.com/hbm1901/index
.cfm?do=abs.viewAbs&abs=3106







Do we really want
collaboration?

— Academia currently
rewards the individual

— Who gets money?

— Who chooses how it Is
spent?

https://www.nhm.ac.uk/visit/wpy/gallery/2010/images/ #OHBM2019 #OpenForAll @kirstie_j
eric-hosking-portfolio-award/4372/a-marvel-of-ants.html https://doi.org/10.5281/zenodo.3243217




Kirstie Whitaker
@kirstie_j

https://the-turing-way.netlify.com/collaborating_github/collaborating_github.html e
https://the-turing-way.netlify.com/version_control/version_control.html #OHBM2019 #OpenForAll @kirstie_j
https://neurohackademy.org https://doi.org/10.5281/zenodo.3243217




& binder

Turn a Git repo into a collection of interactive
notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable
environment, making your code immediately reproducible by anyone, anywhere.

Elizabeth DuPre

@emdupre_

Build and launch a repository
GitHub repository name or URL

GitHub repository name or URL GitHub »

Git branch, tag, or commit Path to a notebook file (optional)

Git branch, tag, or commit Path to a notebook file (optional) File »



