Active Noise Cancelling & Auditory stimulation in fMRI

Bruno NAZARIAN with Jean-Luc ANTON & Julien SEIN

Institut de Neurosciences de la Timone – UMR 7289

Séminaire du CEMEREM – 7 février 2022

Introduction ... you said « sound systems for MRI » ?

The « theoretical » section

Let's talk a bit about sound

The « practical » section

Our own experience at the MRI Center – INT @ CERIMED

The « state of the art » section

Just to have an approximate idea of existing solutions

The Active Noise Cancelling section

Sound – Noise = Signal of Interest

The « questions ? » section

Let's talk a bit about the talk

Definition

- sound is a vibration that propagates as an acoustic wave, through a transmission medium
- transmission media: such as a gas, liquid or solid

As a mechanical wave ... sound has a mechanical source / origin

- Oscillating system
 - Electronical driving
 - Piezo-electric
 - Electro-dynamic
 - Electro-static
- Biological vibration
 - Wings
 - Voice
- Music

transmission

Definition

- sound is a vibration that propagates as an acoustic wave, through a transmission medium
- transmission media: such as a gas, liquid or solid

As a mechanical wave ... sound has a mechanical source / origin

- Oscillating system
 - Electronical driving
 - Piezo-electric
 - Electro-dynamic
 - Electro-static
- Biological vibration
 - Wings
 - Voice
- Music

transmission

Instrumentation / effectors / sensors

Acoustic impedance

The « source / filter » model as a typical illustration

• Definition

Measurement of the opposition that a system/medium presents to the acoustic flow resulting from an acoustic pressure

• Depends on

- Pressure
- Temperature
- Acoustic component
- ...

Ingo R. Titze

Nonlinear source-filter coupling in phonation: Theory

J Acoust Soc Am. 2008 May; 123(5): 2733-2749

Now, let's talk about MRI

Why an auditory system in an MRI ?

Goals / Features

- Communication / Relaxing
- Audio comfort / Noise cancelling
- fMRI / Auditory experiments

Technologies

- Pneumatic
- Piezo-electric
- Electro-dynamic

Ergonomy

- Earplugs
- Headphones

Specifications

Spectral response

Comfort

Passive attenuation

Active attenuation

Build-In manufacturers solutions

Siemens

- Headphones / Earphones
 - Pneumatic technology
 - Mono
 - Easy customization
 - No ANC
 - Siemens Headphones
 - 3M[™] E-A-RLINK[™] Foam Eartips
 - MR151 Earphones

Commercial solutions

Earplugs

- Sensimetrics S14 (3 T) / S15 (3/7 T)
 - Piezoelectric technology
 - Replaceable Comply Canal Tips
 - RF filtering
 - No ANC

- MR PureSound Audio System MK11
 - Pneumatic technology
 - Headphones / earphones
 - No RF filtering needed
 - No ANC

Commercial solutions

Headphones

- MR-Confon
 - Electro-dynamic technology
 - 3T / 7T?
 - RF filtering
 - ANC prototype
 - Slim Piezo headphone

http://www.mr-confon.de/en/products.html

- BOLDfonic
 - Electro-dynamic technology
 - 3T / 7T?
 - RF filtering needed
 - No ANC

https://www.crsltd.com/tools-for-functional-imaging/audio-for-fmri/boldfonic/

Commercial solutions

Headphones

- OptoActive from OptoAcoustics
 - Optical technology
 - 3T / 7T?
 - No RF filtering
 - ANC

https://www.optoacoustics.com/medical/optoactive

- FOMRI-III ANC microphone
- Optical technology
- No RF filtering needed

Pros & cons

Technologies / performances

	Comfort	Size	LF	MF	HF
Piezo earplugs	-/+	++		+	++
Pneumatic earplugs	-/+	++	++	+	-
Electro-dynamic headphones	+/++	-	++	++	++
Pneumatic headphones	+/++	-	++	+	-
Piezo headphones	+/++	+	-	+	++

Some first findings

As usual in MRI, not free lunch ... still depending on ...

- Magnet field
- Coil system
- Needs
- Budget 😳

Passive vs Active noise cancelling

Passive Noise Cancelling (PNC)

- Earplugs / headphones
- Cancelling between 10 30 dB
- Especially efficient on high-frequencies
- Size / Density <----> Cancelling
- Comfort depending on auditive canal size
- Also cancelling / attenuating auditive stimulation

Active Noise Cancelling (ANC)

- Headphones
- Cancelling
- Frequency efficiency
- Comfort depending on head / coil size
- Good way to communicate with patient / subject
- Auditive stimulation

Passive vs Active noise cancelling

Passive Noise Cancelling (PNC)

Bouchons d'oreilles jetables 3M 37dB Sans cordon Orange X 2000

Code commande RS: 133-226 Référence fabricant: 1100-R Marque: 3M

4 En stock pour livraison sous 1 jour(s)				
- 1 4	Boite(s)			
Com	mander			
Vérifier le st	ock en temps réel			
Prix pour la bo	ite de 2000			
301,45 (HT	Ε	361,74 TTC		
Boîte(s)	la boite	Prix par unit		
1-6	301,45 €	0,151 €		

3M

Attenuation:

Attenuation data for the 3M 1100/1110 Ear Plugs (according to EN24869-1)

F (Hz)	63	125	250	500	1000	2000	4000	8000
Mf (dB)	30.0	33.1	36.3	38.4	38.7	39.7	48.3	44.4
sf (dB)	3.9	5.0	7.4	6.2	5.6	4.3	4.5	4.4
Mf-sf (dB)	26.1	28.1	28.9	32.2	33.1	35.4	43.8	40.0
SNR = 37dB H = 37dB			M = 34dB			L = 31dB		
APVf (dB) = Mf -sf(dB)								

Active Noise Cancelling ... for dummies

Active Noise Cancelling ... for dummies

« Just » based on signal substraction

Recording and inverting noise leaves you with your desired signal

Challenges:

- Record the signal
- Extract the noise
- Compute a « reverse » noise
- Diffuse the reverse noise

Active Noise Cancelling ... for dummies

- Microphone
- Controller (DSP)
- Anti-Noise source

Noise source Anti-noise source

Active Noise Cancelling ... Commercial solutions

Nothing to do with MRI

http://www.technofirst.com/fr/noisemaster/

https://www.cirrus.com/products/wm8281/

https://www.bose.co.uk/en_gb/products/headphones/earbuds/quietcomfort-earbuds.html

Active Noise Cancelling ... actual limits

The main problem: « classical » ANC gives its best in low frequencies

http://www.technofirst.com/fr/noisemaster/

Active Noise Cancelling ... actual limitations

The main problem: « classical » ANC gives its best in low frequencies

- DSP time processing
- The predictability problem : HF waves are less predictable
- Hard to evaluate and anticipate the next millisecond's signal

• In MRI, especially BOLD EPI sequences, noise is located around 1000 Hz

BOLD EPI noise

The acoustic wave generated by the gradient coil commutations

• Hard to evaluate and anticipate the next millisecond's signal

• In MRI, especially BOLD EPI sequences, noise is located around 1000 Hz

A few words about MRI compatibles microphones

Two different technogies to « catch » a vibration

• Optical microphones

• Piezoelectric microphones

MC-9

MC-41

System caracterization

How to evaluate both speaker & microphone spectral responses

• 20 – 8000 Hz « chirp »

• « white » noise

Active Noise Cancelling in (f)MRI

How to increase HF noise predictability & optimise DSP computing time ?

- Some (f)MRI protocols produce stationnary noise
- Whole ANC system is based on stationnarity
 - Loop sequences
 - Noise learning stage -> noise model (buffer)
 - ANC corrected each step

A technical partnership MRI / LMA on the previous Bruker 3T ...

• Summary

A technical partnership MRI / LMA on the previous Bruker 3T ...

• The whole instrumental channel (based on the MR-Confon electro-dynamic system)

- Noise modelling driven by X/Y/Z gradient commands
- Multi-reference active noise cancelling

Spectrogramme du signal Ux

séquence Axial0deo

0.2 0.25

temps (s)

X-gradient Voltage command

0.15

0.05

0.35

0.3

Some results

• Spectral analysis

Spectrogramme du signal Uy

séquence Axial0deg

0.2 0.25 0.3

temps (s)

0.35

0.4 0.45

Acoustic wave & spectrogram

EPI Axial sequence

0.05 0.1 0.15

Z-gradient Voltage command

temps (s)

0.3 0.35 0.4 0.45

0.15 0.2 0.25

0.05

0.1

0

-0.1

-0.2 -0.3 -0.4 -0.5 5

10

temps (s)

Some results

• Denoising

15

~ 14 dB denoising around 1kHz

Partial conclusion

- Technical success
- Based on a low-cost commercial headphone set
- Efficient tool for a better understanding of the ANC challenge

- Heavy & complex instrumentation
- Specific need of reference signals (Gradients commands)
- End of use of the Bruker Avance 3T ... RIP

The one used at the MRI Centrer – INT @ CERIMED

Overview

- Optical powered headphones
- Optical digitilized audio signal
- Optical / analog inputs
- DSP / CPU
- Ergonomic Control Console
- Optical Microphon FOMRI-III (independant)

Calibration stage

- White noise binaural analysis
- Spectral response
- Depends on
 - Headphones positionning
 - Patient « local » anatomy
 - Passive earplugs
 - ...

Main principles

- Noise learning stage
- Based on MRI triggers to improve predictability
- Re-triggered buffered input / output
- Used for BOLD EPI sequences
- Only passive attenuation with 3DT1/2 / DTI / Spectro ...
- System clearly dedicated to auditory stimulation in BOLD acquisitions

Learning stage

- White noise binaural analysis
- Spectral response
- Depends on
 - Headphones positionning
 - Patient « local » anatomy
 - Passive earplugs
 - ...

Learning stage & ANC on an EPI BOLD sequence

Dummy scans

Learning stage – 16 seconds

A N C

Learning stage & ANC on an EPI BOLD sequence

Something about the MR triggers

- Default Siemens EPI sequences provides trigger/volume (RT)
- Minneapolis C2P EPI sequence provides trigger/slice or trigger/volume
- Does not have any effect on learning stage duration (16 seconds)

• LET'S TRY

SLICES TRIGGERING

RF adjustment (around 20 ms) each end of RT.

SLICES TRIGGERING

RF adjustment disabled

Noise Cancelling Performance

- EPI Noise : ~ 115-120 dB
- Passive attenuation : ~ 90-95 dB
- Active attenuation : ~ 75-80 dB
- Passive earplug protection : ~ 32 dB

RT Team vs Slices Team

• Let's see on auditory stimulation

• Try a spectral analysis on residual noise

RT Team vs Slices Team

Some strange « reverb » effects

Trying to conclude

- Efficient ANC (~15 dB on EPI main frequencies)
- Easy to set up and use
- What about the passive protection?

- Good tool for auditory experiments without additional passive protections
- Also a very powerful tool for the « self hearing » feature

Thank you for ... listening

Any questions?

Optical microphons ...

... or how to measure a vibration using light

Light source ray (constant) Incidence ray (variable)

The membrane distorsion modulates the reflexion angle

Piezoelectric microphones ...

... or how to measure a vibration using ceramics

10 mV/Pa

MC-9

