Vendredi 18 Décembre 13:30 - 15:30
MRI INT Technical Lecture

Part 2 : Brain functional MR Imaging
Brain activity and functional connectivity

Thanks to the organizers Nicolas WANAVERBECQ & Ivo VANZETTA

Thanks to the speakers and those who helped to prepare this session :
Jean-Luc ANTON, Pascal BELIN, Thierry CHAMINADE, David MEUNIER,
Bruno NAZARIAN, Julien SEIN & Sylvain TAKERKART

Institut de Neurosciences de la Timone (UMR 7289) & Centre IRM-INT@CERIMED
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Brain functional MR Imaging

* Introduction & BOLD effect (Jean-Luc Anton)

* Functional MRI acquisition principles (Julien Sein)

* Instrumentation for fMRI experiment (Bruno Nazarian)

* Univariate fMRI data processing (Jean-Luc Anton)

* fMRI advanced processing (Sylvain Takerkart, Pascal Belin)

* Functional connectivity (David Meunier & Thierry Chaminade)

Modalities of the session :

microphones off, questions in the chat, discussion at the end ... ;
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The BOLD effect : serenpidity-like discovery

The Blood Oxygen Level Dependent effect

Effect of blood CO: level on BOLD contrast.

(a) Coronal slice brain image showing BOLD contrast
from a rat anesthetized with urethane. The gas
inspired was 100% O;.

(b) The same brain but with 90% O»/10%CO; as the
gas inspired. BOLD contrast is greatly reduced.

S Ogawa, et al.,
PNAS, 87(24):9868,1990
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Functional MRI : biophysical principles

Increased local brain activity

- Significant increase in blood flow
(> +30%) (expansion of the capillaries)
Small increase in O2 consumption
(< +5%)

Increasing the local Hb-O2 rate
Decrease of deoxy-Hb (paramagnetic)
Protons stay in phase longer

Increase in the local value of T2/T2*

N A\

N

BOLD response : Blood Oxygen Level Dependent
Deoxy-Hb : Intrinsic Contrast Agent
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Functional MRI : biophysical principles

- Indirect measurement of brain activity
(metabolic effects of the electrical activity of activated neurons)

- Phenomenon measured in the blood vessels (capillaries, venules, etc.) that drain the
activated cerebral territory

- Precise spatial location (mm3) but to be considered with caution
- Time course of the fMRI signal : smoothed and delayed by the haemodynamic function

Neuronal BoLD } |
activity signal !
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Cerebral vasculature
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The Human Brain - Surface, Blood Supply and Three-Dimensional Sectional Anatomy, Springer, 1999
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= - Nature and origins of the BOLD signa|

* In anaesthetised monkeys, joint recordings :

Neural electrical signals by microelectrode & fMRI signal

, Logothetis et al. R
N %/ Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001 /\\?Rw



Nature and origins of the BOLD signal

* The BOLD response seems to correlate more with LFPs than with MUAs
- The BOLD would be more sensitive to dendritic and synaptic events than to the action potentials.

nt 4

Neural or BOLD signal change

Logothetis et al. .
Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001 (Y

= ---- reponse BOLD
---- LFP
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Nature and origins of the BOLD signal

* The BOLD would be more sensitive to dendritic and synaptic events than to the action potentials

-> Caution in the interpretation of fMRI results and in their comparison with those from other
brain activity recording techniques (EEG, MEG, electro-physiology, ...) !
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Nature and origins of the BOLD signal

* The BOLD would be more sensitive to dendritic and synaptic events than to the action potentials

=> Caution in the interpretation of fMRI results and in their comparison with those from other
brain activity recording techniques (EEG, MEG, electro-physiology, ...) !

* New references on Coupling neuronal activity & BOLD effect :
Review from Lauritzen : https://pubmed.ncbi.nim.nih.gov/15611729/
Recent Special Issue : https://royalsocietypublishing.org/toc/rstb/2021/376/1815



Comparison with other technics

Non-invasive (intrinsic signal of the organism)
Good spatial resolution : = millimetre
Relatively poor temporal resolution : = second
Vascular phenomenon

indirect measurement of brain activity brain

PET QNS5

log  ma

Size
(m m) column Optical Microlesions
layer Dyes 2-Deoxyglucose
neuron
Single Unit
dendrite
Light
synapse Microscopy

3 2 -1 0 1 2 3 4 5 6 7

millisecond second minute hour day

Log Time (seconds)
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Signal:

1. Polarization

Energie

2. Resonance

3. Relaxation

Image:
1. ADC
N Y 2. Fourier Transfort

n . 3
b

Principle of MRI image generation




fMRI acquistion principle : 2D EPI

1. fast: high sampling rate, “freeze” motion to study rapidly
changing physiological processes

2. sensitive to the BOLD effect (= T2* weigted)

=> The workhorse for fMRI: Gradient echo (=T2* weighted) Echo Planar Imaging (=fast)

. j‘z" TE =30ms |

The k-space (slice) is acquired after one excitation

TAgjice= 68 ms

Voxel size = (2.5 mmy)3

IRM
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TR: a war horse

Conventional Multi-slice Imaging

Whole Volume TR
= N... X Time per slice

slice




_________________________________________________________________________________| SPatia| resolution in fMRI

64 x 64 voxels of 3mm x 3mm 128 x 128 voxels of 1,5mm x 1,5mm

n: &

Nice! But higher isotropic resolution means higher number of
slices to cover the whole brain => TR increases!



Simultaneous multi slice acquisitions

SMS, Multiband: simultaneous slices separated via multiple coils

« Larkman et al., JMRI, 2001
* Moeller et al., MRM, 2010
» Setsompop et al., MRM, 2012

Excite multiple slices

simultaneously

Each coil yields a linear
combination of signals from
the different slices (weighted
by sensitivity profiles)

Matrix inversion provides a
solution to separate slices




MB10 MB12

MB8

Simultaneous multi slice acquisitions

MB6

MB1

O
o

0.48

6s

b

1

2.4 s

48s

TR =

]
achievable TR




No free lunch ! (little dirty secrets of EPI)

Average bold signal

Average bold signal, with background enhancement

— Nyquist ghost N/2 /
N QZ/ = In general not a problem, but something to check in QC T



s No free lunch ! (|itt|e dirty secrets of Ep|)

Problem: large distortions due to magnetic
susceptibility (especially at interfaces air/ tissue)

“PA” phase encoding

o
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s No free lunch ! (|itt|e dirty secrets of Ep|)

Problem: large distortions due to magnetic
susceptibility (especially at interfaces air/ tissue)

Solutions:

- On the acquisition side:

- best shimming from the scanner

- Possibility to use parallel excitation

PPUSS PSS

No GRAPPA
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s No free lunch ! (|itt|e dirty secrets of Ep|)

Problem: large distortions due to magnetic
susceptibility (especially at interfaces air/ tissue)

Solutions: Spin Echo based FieldMap
- On the acquisition side:

- Acquire a BO Fieldmap

nt o é ; =>to be used in preprocessing



Echo #1

Multi-echo EPI
Echo #3

0 22 30 4 5 6 70 8

Echo #2

0 22 30 4 5 6 70 8

More than 1 T2* in the brain
Best BOLD sensitive when TE=T2*
Which TE to use?

0 20 % 4 5 60 70 8

0 20 0 4 5 60 70 8

Alternative solutions

T2 * distribution

50 ms




Not only 2D EPI: 3D FLASH at 3T

3D FLASH (Gradient Echo) sequence
for intra layer fMRI in V1
0.75x0.75 x 0.75 mm3 at 3T

20 slices

Intensity (a.u.)
Intensity (a.u.)

Rest
Act

WM-GM GM-CSF WM-GM GM-CSF WM-GM GM-CSF

N Qé/ Koopmans, Barth, Norris. HBM (2010) Towr



Not only 2D EPI: 3D EPI at 3T

g SMS-EPI high pass -~ ’\ 3D-EPI / SMS-EPI high pass

Ll

T E

Motor network

Average functional connectivity ICC

/

/

L ﬂé/ Stirnberg et al. Neurolmage (2017) /”'1



To go further

Progress in Neurobiology

;

. 0 Available online 23 October 2020, 101936 SR
ESE\IR In Press, Corrected Proof (2) — ."1
Review

New acquisition techniques and their
prospects for the achievable resolution
of fMRI

Saskia Bollmann 2, Markus Barth* b c 2 = *

neurosciences



neurosciences

PHYSIOLOGY

Instrumentation for fMRI — The context

PSYCHOPHYSICS
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Specifications

neurosciences

Mechanical
encapsulation

Sensors

Analog &
digital 1/0

Instrumentation for fMRI — Global template

End-user
interface

Experiment

g@ Technical ressources
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Instrumentation for fMRI — Hardware solutions
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Instrumentation for fMRI — Devices

Stimulation

Visual : 120-1440 Hz FullHD video-projector, LED Matrix stimulator

Audio : ANC OptoActive headphones / Passive piezo Sensimetrics earplugs
Tactile : regulated parametric airflow dispenser, electric stimulators
Proprioceptive : pneumatic vibrators

Olfactive : 4 channels smell difuser

Fluid dispenser

Behavioral & physiological data recording

5-fingers ergonomic keyboards, response button

Force & movement sensors, trackball, joystick

Eye movements & pupil size acquisition : 1000 Hz EyelLink from SR-Research
Resistive graphic tablet for writing task (100 Hz)

ANC optical microphon from OptoAcoustics

EMG acquisition

Physiological monitoring & acquisition (PPG / Respiratory belt / SPO2)



Instrumentation for fMRI — The Challenge

How to make several instruments working together and synchronously




MRI clock
driving
software
timing

neurosciences

Master clock generated by MRI triggers

Instrumentation for fMRI —

Master/Slave template

EXPERIMENT DESIGN

L Event 1

. ISI'1
. Event 2
. ISI 2
. . Event 3

4
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Instrumentation for fMRI — The Challenge

How to make several instruments working together and synchronously

Nb total de triggers

Toggetming 1 B B | 0 L e = w

* Multi-threading

R

Bitmap Modality

* Parallel programming ( I 3

* Real-time processing ' P e Tl

QO NATIONAL INSTRUMENTS l”"f"‘f" programme @

L .
Les trois VI (Synchro, Stim Opsior
et Réponse) & droite [
rrrrrr 2 fonctionnent en // et sont € d erreur _tpemmmeed

synchronisés par des
loccurences

»> Options >> tnouzg
------------------------------------------- Input Sequence > >

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr LabVIEW Output File (txt) -> Sourcedata » > !

n: &




Stimulation timings and behavioral data

Onsets, digital responses, reaction times
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Instrumentation for fMRI — Outputs ( Data)

It

Eye movements

Complex tasks
production

l
T T

e

Electrophysiology

Vocal responses



e |nstrumentation for fMRI - Outputs ( Structure )

BRAIN IMAGING
DATA'STRUCTURE

Brain Imaging Data Structure : BIDS

oo
" ' —— Basic « events » TSV files
ses
ey I
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|— «——— All other useful ressource files (WAV, AVI, EDF, ...)
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neurosciences

PHYSIOLOGY

Instrumentation for fMRI — Outputs ( next step )

PSYCHOPHYSICS
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Next step ...

PROCESSING




Experimental principle in summary

Simple example : one type of stimuli
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Concurrently, acquisition of numerous functional brain volumes
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fMRI psychophysics protocols

Tasks design :

- Simple « cognitive subtraction » : task A versus task B
- Factorial design : e.g. 2 factors :
- sensory modality (visual or tactile)
- nature of stimulus (left or right)
- Parametrical : e.g. varying the intensity of the stimuli, the load of the Working Memory, ...

- Repetition Suppression : the activation level depends on the similarity of two consecutive stimuli
(priming effect)

Temporal design :

- Block design

evencaossn (LI DL L
Nt Y& L




General fMRI processing scheme

Image time-series

Preprocessing Y

Spatial filter

|

|

GLM Contrasts & inferena

Statistical Parametric Map

Design matrix

|

Realignment | —| Smoothing

General Linear Model

o

Normalisation

Nt @

Anatomical ' o
reference )
Parameter estimates

l Statistical

<«— RFT
Inference

p <0.05

)
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neurosciences

Preprocessing
Image time-series

Spatial filter

|

Realignment

—

Smoothing

l

I

Normalisation

A B

Anatomical
reference

General fMRI processing scheme

@L\



Preprocessing : data correction for artefacts
* Motion of subject’s head -> motion correction of EPI-BOLD volumes

Distorsion of EPI-BOLD volumes
(due to inhomogeneity of magnetic field) -> susceptibility distorsion correction (based on fielmap)

Motion / distorsion btw structural & functional -> coregister the functional volumes onto structural one

Normalize each subject data to a standard space for group study

n % ?{\ ¢
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neurosciences

Brain atlas
Default:
MNI152
nonfinear
asymmetric

Fuse & Conform

All T1w images are aligned and averaged
to form a 3D reference image

NIfTI headers are checked for validity

INU Correction

The T1w reference is run through the
N4 aigorithm to correct for intensity
nonuniformity (INU)

Skull-stripping
Allas-based brain extraction is
performed on the reference T1w image

T2-weighted
(Optional)

Anatomical preprocessing

Spatial normalization Surface

Non-linear, spatial Smbcosolbocommlshool

alignment to the brain are reconstructed from

atlas anatomical information (T w
reference, T2w)

FMRI-PREP preprocessing pipeline

BOLD run

One run of one task (or msmg-smlo)
time-series of
(BOLD) measuremems

Generate reference & brain mask

Time-points showing non-steady state artifacts (excess of
T1 contrast) are aligned and averaged to generate a
reference image in native space

Parameters representing bulk head motion (due to
involuntary drift, swallowing, etc.) of each timepoint with
respect to the reference are estimated

Slice-timing correction

_ (Optional) When the acquisition time of 2D axial slices of a
given timepoint is available, temporal dynamics are estimated
and all slices resampled to the mid-timepoint of that TR

Alignment to T1w reference
Registers activity in BOLD
voxels to anatomical location

Susceptibility distortion
estimation

(Optional) Find a deformation
field that compensates for the

distortion, when adequate
acquisitions are present

Sample in template Sample in native

Sample on surface Resample the BOLD ~ "One-shot"
Sample the BOLD signal signal in atlas-space,  resampling of the
on the surfaces concatenating all BOLD signal in its
reconstructed from the pertinent original grid,
anatomical data transformations applying corrections £
—£
~ Confounds \ RW

Calculate and store nuisance regressors such as noise
components, motion parameters, global signals, efc. /



Motion correction of EPI-BOLD volumes

translation

image

rotation

yaw |
/ A J
nt 0 S0 100 150 200 250

image

neurosciences

AON



Susceptibility distorsion correction




Susceptibility distorsion correction




Coregister functional & anatomical data




Coregister functional & anatomical data

moving
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General fMRI processing scheme

GLM

Design matrix

-
-
-
-
-
-
-
-
-
-
-

General Linear Model

l .

Parameter estimates

ROR



The question

A very simple fMRI experiment

One session

Passive word
listening
versus rest

7 cycles of
rest and listening

Blocks of 6 scans
with 7 sec TR

N 4

120p
18
16
14f
12}
Mo
108

106

104 f

102

b 0 20 0 m 0 0
time {seconds} R R

EEEEEANEN

Stimulus function

response at [62, -28, 10]

Question: Is there a change in the BOLD response
between listening and rest ?

o
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General Linear Model (GLM)
Voxel-wise time series analysis

m

Model
specification

Parameter
estimation

awi

Hypothesis

Statistic

\ 4

BOLD signal

single voxel =
time series SPM (Y




Single voxel regression model

oWl |
1
=
+
=
N

error

ﬁ
BOLD signal 1 X2

nt ¥ y=xp+x,pte

General Linear Model (GLM)
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Parameter estimation

n: 4

- -
!= B

B,
I X

y=Xf+e

General Linear Model (GLM)

N

Estimate parameters [3 Z o2

to minimize : 1 t
t=

Ordinary least squares
estimation (OLS) (assuming
i.i.d. error):

p=(X"X)"X"y

B~N(B,a*(XTX)™)

o
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Mass-univariate analysis

P
p,

General Linear Model (GLM)

for each voxel

y=Xf+e

2 beta maps
1 error map

)
TR\



General Linear Model (GLM)
Mass-univariate analysis

>

ﬁ

V' : number of voxels
N : number of scans p beta maps
Nvy NV N+ P : number of regressors 1 error map
The design matrix X embodies all available knowledge about #
N ﬂé/ experimentally controlled factors and potential confounds. T



General Linear Model (GLM)
Mass-univariate analysis

74

ﬁ

p beta maps

Nvy 1 error map
The design matrix X embodies all available knowledge about #
no ﬁé/ experimentally controlled factors and potential confounds. Tt



Convolution model of the BOLD response

Convolve stimulus function with a << canonical>>
hemodynamic response function (HRF):

® HRF

20 PST(s)

Intensity

General Linear Model (GLM)

@)= /gl -)dr




B ———s - General fMRI processing scheme

Statistical
Inference

nt

neurosciences

Contrasts & inferen&

Statistical Parametric Map

<«— RFT

p <0.05




Contrasts & inference

a simple example

T-test

[ Passive word listening versus rest

SPMresults:

=3.2057 {p<0.001}

Height threshold T
voxel-level

mm mm mm

( Z:—.) p uncorrected

T

o
TR

LN NON M0N0 MONA TN
— [ R A<
1 1

oOoOIMISANISS
MO INMOANITANN
11 (I | 1

~OHMOWVINO
LOMNOMNMN T TN
11 I

63 -12
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| S|gna| fluctuations or noise ...

* Even after good preprocessing, there still remain artefactual fluctuations of the BOLD signal due to motion or
physiological influences

* Different sources of noise :

- Head motion

- Cardiac pulsatility - motion (global) & inflow (local)
- Respiratory induced changes > change of B0 in the head

- Draining veins

- Slow drifts

- Hardware related instabilities

n g}é/ T
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Inspired pO,
Inspired pCO,
Blood glucose

Vertigo/dizziness
Claustrophobia
Anxiety
Drowsiness
Body temp.

Neurovascular coupling

f

Age, Disease, Injury
Recreational drugs
Medications

Head motion

\/

Respiration

Brain pulsation

true brain motionl

‘A.

Smoking (CO)
Hematocrit
Anemia

Signal fluctuations or noise ...

Arterial pO,
Arterial pCO,

3

Hypertension
Hypotension

depth & rate

Cardiovascular fitness
Disease, Injury
Recent exercise
Recreational drugs
Medications
Caffeine

Body/limb movement

Bed
instability
7Y

Scanner

Body weight

instability

Main dependencies leading
to modulation of fMRI data,
usually a time series of EPI

Krainik & al, 2013
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Box 1 | Overview of confound models for motion correction

Reakgnment parameters (Step 3)

The frame-to-frame estimates of the
rotation and translation of the head
about three cardinal axes

Considerations:

Interpolation procedures, such as despiking
and shice-time correction, can result in
underestimation of the total frame-to-frame
movement

Denoising motion & physiological-related noise

compartments (Step 17A)

The mean signal computed across
tissue compartments susceptile to
noise, typically WM and CSF

C

Superficial WM and CSF signals correlate
with the global and GM signals™. To limit
partial volume effects along the GM
interface, mask erosion is recommended

The mean signal compuled across the
ontiro brain®

Considerations:

F It exp: d
(or 0 and
because it largely recapitulated the mean
signal from gray matter’ “°** GSR is
singular in its ability to remove widespread
aritact

Spikes (censoring) (Step 8)

A set of delta functions that remove
all varance from frames that exceed
a noise threshold'' '’

Considerations:

To minimize the influence of noisy frames,
censoring should be incorporaked
iteratively'?, Cansoring also allers the
autocorrelation structure of the data and
leads 1o variable loss of tlemporal degroees
of freedom across subjects

s(t)
N

s(t-1)

LY AR

‘%s 1) s(1)*

Expansions of other nuisance time
series obtained by shifting the
orginals forward or backward in
time, by computing their temporal
derivatives or by calculating
quadratic or higher-order terms '*

Signals computed from records of
physiological processes such as pulse
and respiration

Considerations:

Physidlogical recordings are not often
available. Prior work has shown that much
physiological noise is captured by the
global signal'?

OO

ICA (Step 14)

Signals identified via ICA-based data
and then

as atifactual by either a trained

classifier”’ or a heuristic™

Considerations:

ICA-based denoising can effectively remove
local motion artifact but is less effective at
removing widespread motion artifact’*4*

A set of orthogonal time series
computed via PCA over WM and CSF
(anatomical CompCor) or over brain
regions with high temporal variance
(lemporal CompCon ™"
Considerations:

In our experience, aCompCor has
outperformed tCompCor, butaCompCor
may not Zodovm as well in high-motion
samplos

Ciric & al

o
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* Framewise Displacement

* DVARS

* Carpet Plot (before)

* Carpet Plot (after)

N

neurosciences

FD

DVARS
U o vo

N U~

Input (voxels)

Output 'cleaned'

— input
—— cleaned
A

0.00 89.00 178.00 267.00 356.00
time (s)



tsnr for adults

Improvement of data quality

(I I = I

raw
preprocMNI
acompcors
acompcorl2nomo
acompcorl2
acompcorS0



Improvement of data quality

* It’s crucial to well denoise for connectivity analysis, but also for activation studies

Loss of ventricular Loss of all brain Greater statistical
noising activity noising activity values

6

Before °ﬂ

Denoising

1

o
TRA

After :u :
n: Y ° 2

Thanks to Caroline Landelle



Improvement of data quality

* It’s crucial to well denoise for connectivity analysis & activation studies, when comparing groups

A

Mean FD (mm)

o

Mean FD (mm)

0.5

0.4

03

0.2

0.1

0.5

04

03

0.2

0.1

0.0

Task-runs
Before preprocessing

o—0—0—0

Run1 Run2 Run3 Run4

Task-runs

, [ns

Before After

Mean FD (mm)

-0O-Young
—/-0ld

Mean FD (mm)

0.5

o
P

0.3

0.2

0.1

0.0

04

0.3

0.2

0.1

0.0

Task-runs
After preprocessing

Run1 Run2 Run3 Run4

Resting-State run

| ns

After Landelle & al, 2020

Before

)
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Group study : Random Effect (RFX)

[ First level ]

Data (per voxel) Design Matrix  Contrast Image

|
" =
S2

GG

S11

S12

[0 [

‘BN B

o
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Group study : Random Effect (RFX)

[ First level ] [ Second level J

Data (per voxel) Design Matrix  Contrast Image

One-sample t-test SPM(t)

contrast(s)

e Random effects:
¢ = c'& summary statistic
JVar(c" &) approach




MVPA for dummies

From Univariate to MultiVariate Pattern Analysis

1. Concepts
2. Methods

3. Applications



MVPA for dummies: Concepts

Let’s try something...

L00Z “le 18 Aqer

Congratulations !!!

n ¥ c



MVPA for dummies: Concepts

Univariate GLM : f(X) =Y
X = the design (experimental paradigm) el miaice
Y = the data (timeseries of ONE voxel) '

f = a multiple regression
« encoding »

Multi-voxel pattgrn analysis

Decoding
Reverse Inference

Multivariate pattern analysis : f(X) = Y

X = the data (spatial pattern of SEVERAL voxels)
Y = a variable related to brain states (stimulus category, reaction time etc.)
f = a model (can be anything, linear or not, etc.)

« decoding »

MultiVariate Pattern Analysis (MVPA) — Decoding

(Brain reading - Reverse inference)

N 4
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MVPA for dummies: Concepts

Where is the Machine Learning ?
Fitting model = learning the function f

What’s magic with Machine Learning ?
Supervised learning = providing examples of the relations between x & y
Training the model on these examples to learn f

In computer vision, machine learning models (e.g for object recognition) are trained on
millions of labelled examples... In MVPA studies, we have a few 100s...

MVPA fMRI magics : stimulus reconstruction
nt W Supervision + A dedicated generative model + More data than usual 2



MVPA for dummies: Methods
Defining f, X, y in the equation f(X) = Y

1. choosing X and y defines your scientific question
e.g X = full brain and y = category of stimulus
e.g X = ROI1 and ROI2 and y = reaction time

2. preprocessing matters... X should « represent » the response to one trial

3. y defines the machine learning problem
e.g y discrete : classification task
e.g y continuous : regression task

4. which model f? (e.g which classifier amongst tens of existing classifiers)
In general, they all perform similarly (if well used)
W If you see a large difference, it's probably because you misused some 2.



MVPA for dummies: Methods

Evaluation of the generalization performance (of predictive models) :

Full data
I [ [

1. train on data ; test on independent data
e.g on different runs, on different subjects

B T T70 e [

Train set Test set

2. with few data, split data in several pieces and cross-validation
Each split should have the same P(X,Y) distribution

3. assess significance with non-parametric statistics

/10Z “|e 1@ xnenbouep
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Voxel 2 (y)

YA

MVPA for dummies: Applications

1. study small distributed effects (representations...)

Voxel 2 (y)

- /1
o L

S

Voxel 1(x)

"
1

pattern vector

Voxel 2 (y)

=
Voxel 1 (x)

Voxel 1 (x)

<Y

>

Haynes et al., 2015

o
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2. brain mapping : the searchlight approach (sliding window)

Cross-validated, searchlight” decoding provides accuracy maps
Training data

A

spherica 2 a
cluster = = °
I lJ =i o~
- 75%
1 .
Testdata :
F fa
CassA  CassB
Extraction of theinput pattemns, Partitioning of Classification (eg. Mean accuracy of
eg. parameter estimates (betas) thedata by support vector dlassifying test data
or triakwise BOLD signal, froma machine) in sphere
sphere of voxels with centerin v; y

The same procedureis repeated for every voxel,sothat acompleteaccuracy mapis obtained.

Hebart et al., 2015

Schén and Takerkart




MVPA for dummies: Applications

3. probing for generalization across contexts (tasks, regions, populations...)

8102 “"|e 18 anenbed

e.g : studying the coding of emotions in voice and music

)
TRA



. ______________________________________________________________________________ Representationa| Simi|arity Ana|ysis

BEHAVIORAL AND BRAIN SCIENCES (1998) 21, 449-498

Printed in the United States of America

Representation is representation
of similarities

Shimon Edelman

Center for Biological and Computational Leaming,

Department of Brain and Cognitive Sciences,

Massachussetts Institute of Technology.

Cambridge MA 02142

Electronic mail: edelman@ai.mit.edu www.ai.mit edu/~edelman



dissimilarity

frontiers in
SYSTENMS NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
published: 24 Novermber 2008
doi: 10.3389neuro.06.004.2008

Representational similarity analysis — connecting the branches

of systems neuroscience

Nikolaus Kriegeskorte' *, Marieke Mur'Z and Peter Bandettini’

Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National institute of Mental Health, National Institutes of Health, Bethesda, MD, USA

2 Department of Cognitive Neurascience, Faculty of Psychology, Me University, Maa . The

compute dissimilarity
(1-correlation across space)

brain or model

E ﬁ experimental conditions

computational models

* symbolic models

* connectionist models

* biological neural models

havioral data

« reaction time

brain-activity data

« coll recordings dissimilarity matrix

«fMRI *errors
-EEG, MEG « explicit judgements
a
""" computational model “,
\ (stage-2 representation) "
o oo \?
human fMRI " other modalities
 (subyect 1, region A) (EEG, MEG, optical imaging etc.)

i

monkey cell nconﬁng:
S i e e
e &

el

\ human mn’n monkey fMRI ’ &

(subject 2, region B) 1“‘“1'%8]

\a !&



RepresentationPl cimilavitv analucic

-
32
£ Pattern features
g (e.g., voxels)
v
2E
L%
o
R
53
v E
=
w
>
X
<

re

Figure 4

Representational similarity analysis examines the patterns of distances between vectors in the high-dimensional vector space. Measures
of angular similarity such as cosine and Pearson product-moment correlation are standard measures that are most sensitive to the
relative contributions of feature dimensions. These similarity measures are transformed into dissimilarities by subtracting them from 1.
Another standard measure of the distance between vectors is Euclidean distance, which is more sensitive to overall differences in vector
length or magnitude.

Haxby et al (2014) Ann Rev Neurosci



Training data

Pattern features (e.g., voxels)

Conditions
(e.g., stimuli or time points)

W Dol DPYD

Figure 2

MVP classification analyses involve partitioning data matrices into different sets for training and testing a pattern classifier. A classifier
is trained to designate sectors of the vector space to the labels provided for the samples in the training set. Test samples are then
classified as belonging to the labeled class associated with the sector in which they reside. Classification accuracy is measured as the
proportion of predicted labels that match the actual label (target) for each test item. A confusion matrix provides information about the
patterns of correct classifications (on the diagonal) and misclassifications (off diagonal).

Haxby et al (2014) Ann Rev Neurosci
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human not human
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. trend models
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Kriegeskorte et al (2009) Front Human neurosci



dissimilarity

dissimilarity matrix

compute dissimilarity
(1-correlation across space)

animate | inanimate
human lnot human natural|artificial

body|face |body|face
- Gt 1 i et 40 R ENE I ()
E.aﬁ%g_—w‘ﬂt = ZeWwi=) ) | I
'fﬁ%ﬂ‘ﬁ"j? { Sl L
15" 0050 ke g »
6. 2
wr ST
 # S‘ES
& ,gzg
2 EE]
£33y < >3
: oz{.ag D
tt’% e go
)Si. e
°c-t‘ S 3
L™
s8=8 3.
el <3
. ?‘.a_-; 38
y “ (\ ¢:;
"-'6 -
human IT
dissimilarity
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Kriegeskorte et al (2009) Front Human neurosci



dissimilarity

dissimilarity matrix

compute dissimilarity
(1-correlation across space)

similarity-graph icon

Kriegeskorte et al (2009) Front Human neurosci



dissimilarity

100

[percentile]

EVC

Brain-based RDMs

Sibwiueu; | sjewiue

ot human| natural |artificial
animate | inanimate

Kriegeskorte et al (2009) Front Human neurosci



Computation-based RDMs

luminance image luminance image

(high-pass)
stimulus image L low-pass g high-pass gray 3 N
sihouette soluminant V1 simple cell V1 complex cell

{

color set
(joint Lab histogram)

+ 4

§
g

w ‘
o
number of pixels
2 8

0 - b
o 50 100 150 200 2%
RGE intensity

Kriegeskorte et al (2009) Front Human neurosci



Theory-based RDMs

Kriegeskorte et al (2009) Front Human neurosci



deviation from right FFA dissimilarity matrix

deviation from early-visual-cortex dissimilarity matrix

Interpreting Brain-based RDMs

14

1.2

N R (1-Spearman correlation)
- N ~ o o o o
T 1 5o ) » =) o -

e
©

(1-Spearman correlation)
o
o

<

EVC

(dissimilarity SNR=0.61)

1e-4 1e-4 1e-4 1e-4 1e-4 .01 1e-4 .01 .05

best

1e-4 1e-4 1e-4 1e-4 .01
best

.01

worst

right FFA

(dissimilarity SNR=0.72)

.05 05 .05 01 .01 .05 .01 .05

Kriegeskorte et"81%2009) Front Human neurosci



Interpreting Brain-based RDMs

b hi-pass LUM image @

lo-pass LUM image gluminance image ’
®jiace-nonrace

M- RADON (smoothed) right.PPA
RADON®

°
V1 model left PPA
VA1 mod.el o(Smoothed)

P
ix col

[S;)earman M

[ o

Lab image @ o T ST
, J right FFA silhouette image
‘ @ animate-inanimate
Lab joint histogram e , ,
face-animate-prototype-pattern

Kriegeskorte et al (2009) Front Human neurosci



Cros

computational models
+ symbolic models

« connectionist models

* biological neural models

behavioral data

. - representational
brain-activity data
dissimilarity matrix < veaction Hime
- errors
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« cell recordings
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RSA with auditory stimuli

Stimulus-feature

Stimulus feature dissimilarity matrix (SDM)

Sound stimulus

- 4*4’+~“;~+¢»¢{9'$ L&

Representational similarity analysis:
test for RDM-SDM association

Searchlight on
stimulus-specific BOLD

Spatial distribution
of BOLD effect  Representational dissimilarity
matrix (RDM)

14 I
Abstract enc 90/ 9

Giordano et al (2009) Cerebral cortex



Cerebral Cortex
doi:10.1093/cercor/bhs162

Abstract Encoding of Auditory Objects in Cortical Activity Patterns

Bruno L. Giordano"2, Stephen McAdams?, Robert J. Zatorre?, Nikolaus Kriegeskorte® and Pascal Belin'->

- Pitch (median) Loudness (median) Spectral centroid (IQR)

Harmonicity (median)

Dissimilarity (percentile)
4 .

0 100
SPM: T(19)

EE ]
4.6 95
Positive correlation

14-09-2011 - VNL
Abstract encoding of sound categories ] 91/9

Giordano et al (2009) Cerebral cortex



Continuous vs Discrete Emotions

Intense

@ Astonished

Afraid  Alarmed °

e e Excited
Angrye @ °
Tense Amused ® Happy
® Delighted

B
Frustrated ® Annoyed

o o Glad

- Distressed ® Pleased
c : °
€ ]
b 2
2 2
4 ® Miserable oK) B
[ a
5 e Satisfed ®

. Serene @ ® Atease
. ® Depressed ® Caim
® Gloomy

® Relaxed

Bored
°

Mild

Giordano et al (in press) Nature Human Behaviour
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Giordano et al (in press) Nature Human Behaviour



A: categories B: dimensions

)

Valence Arousal
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N g B
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H
:.. Low High < ..
Valence
C: perceptual D
dissimilarity Y
O % - (O Female speaker
§ g [J Male speaker
- @ c ﬂ; 03 30 ;\?
Disgust igo 35
() HE : kS ge
° gt G
a3 - - = -]
O No morphing Pleasure £ T 5] £3
O o © ®» 01 -10 o-g
O O O o Category Valence Arousal Category >
125 100 75 50 25 ROM - ROM - ROM dimensions

Emotion intensity (%)

Giordano et al (in press) Nature Human Behaviour



A Emotion categorization
% 117 ms: mSTG-L

© o 1
Time from onset (z)

B: valence ratings
% 757 ms: aSTG/Insula-R
NN MRI

D: categories vs. Dimensions
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Functional connectivity

From Friston (1994) definition :

Functional connectivity

« co-activation of areas may be related to a functional link between the areas
— study the correlation of signals

— undirected relation (only strength)

Effective connectivity

o causal link between 2 areas : the signal in one area influences the signal in the
other

- based on model fit ( ~ considering A—>B, what results are expected?)

— directed relation




Functional connectivity

Different techniques (but ~ looking at the same properties):

Seed-based connectivity

Seed-based correlation analvsis

“network”

@= LI =l

. 0 threshold
correlate seed’s time
series with every other
voxel's time series

Requires a priori seed (hypothesis)
How define the seed (atlas? functional localizer?) — sensitivity
of results to exact size/placement

Straightforward intepretation



Functional connectivity

Different techniques (but ~ looking at the same properties):

Spatial ICA

Independent component analysis

* Cocktail party problem

— N microphones around a room record different mixtures of
N speakers’ voices

— How to separate the voices of each speaker?

Observed data

timel
[CA can be applied to

‘unmix’ TMRI

data into . g

time2
networks l ‘ ‘
Multivariate L

time3




Functional connectivity

Different techniques (but ~ looking at the same properties):

Spatial ICA Spatial ICA

* Decompose fMRI data into fixed spatial components (“networks™)
with time-dependent weights (network time courses)

a,(t)]

/ 'WW%!“

ay(t) ; ;
S v o etV
ay.(t)

MM&W\%«W WFWvWWW
‘Mﬁ/\\]ﬂ g: ) WJWW\(V V\\M\)\ N/VYL\[\/\WL A \[& "y

raw_data(t)

McKeown et al, 1998
Thomas et al, 2002



Functional connectivity

Different techniques (but ~ looking at the same properties):

Graph-based based :

1.0

« All-to-all seed based correlations
o Requires the definition of « regions »
a priori (i.e. an atlas/template)

00 02 04 06 08

00 02 04 06 08 10



Functional connectivity

Different techniques (but ~looking at the same properties):

Graph-based based : between regions at each frequency

gl . | 4
3ol Whinwaresbio t M | B8 N doabde | VN,
s | TV ,—‘1"&'_.’, T S helanad kel M %0 ]‘“1
B ? \

g (T - 10 rvages (T = 10

Regional parcellation

(AAL template) (Achard et al., 2005)




Defaut mode network

Originally :
- what happens when looking at regions more « active » during baseline than during ANY
task in task activation fMRI

- Resting state : The subject stays at rest, eyes open, not falling asleep



Defaut mode network

A very unique pattern :

medial prefrontal cortex, posterior cingulate cortex, precuneus, inferior parietal lobules,
and medial temporal regions

— contrarily to what one may expect, VERY reliable across individuals

Default Mode Network

* higher activity during passive
baseline conditions comapred to
(most) tasks

functional
connectivity in
N T AT A resting state

Raichle at el., 2001

review: Buckner et al. , Ann. N.Y. Acad. Sci. 2008 Greicius et al. 2003




Effective Connectivity

(ie Task modulation of functional connectivity)



* Functional segregation = Localize tasks effects versus
Functional integration = How networks interact during tasks

Functional Functional
segregation integration

Functional Integration
Networks of interactions among specialised areas

* Analysis of how different regions in
a neuronal system interact
(coupling).

* Determines how an experimental
manipulation affects coupling
between regions.

‘Connectivity’
analysis
- - I’
nt o é / Functional Effective _ _ Q.
connectivity  connectivity Gitelman, 2011; Friston, 2011



* Functional integration

FUNCTIONAL connectivity
"Statistical temporal
correlations between
spatially remote brain
areas"

EFFECTIVE connectivity #

"Influence one area
exerts on another area"

MODEL-FREE
* Exploratory
 Data Driven

* No Causation
e Whole brain

Functional versus Effective connectivity

- PCA/ICA
- Pairwise ROI Correlations
1- Whole brain seed driven
connectivity
- Graph analyses

MODEL-BASED #[PsychoPhysiological Interactions

Confirmatory

* Hypothesis driven
Causal directions
Reduced set of
regions

PPI

|Structural Equation Models

SEM

Dynamic Causal Models

DCM %

TRA

Granger Causality ... /



Functional versus Effective connectivity

* Functional integration

FUNCTIONAL connectivity : MODEL-FREE» mh%estm S—
"Statistical temporal * Exploratory d’&‘HHVé%‘Tu R Correlations
correlations between * Data Driven | nz Aﬁﬁ[am seed driven
spatially remote brain * No Causation corhectivity

areas” « Whole brain - Graph analyses /4

EFFECTIVE connectivity # MODEL-BASED #[PsychoPhysmloglcal Interactions

"Infl Confirmatory PPI
njiuence one area * Hypothesis driven Structural Equation Models
exerts on another area" . Causal directions SEM
e Reduced set of Dynamic Causal Models
: i DCM '
/ regions ?&w
[ Sé/ Granger Causality ... /



Psychophysiological Interaction (PPI)

* PsychoPhysiological Interaction (PPI) analysis concerns task-specific changes in the relationship between
different brain areas’ activity

* PPl aims to identify regions whose activity depends on an interaction between a Physiological factor
(BOLD time course of a region of interest) and a Psychological factor (the task)

In this case study, the goal is to use PPl to examine the change in @
effective connectivity between V1 and V5 while the subject observes : y
visual motion instructed to attend vs. not attend to dots' speed.
The PPl attempts to find a significant difference in the regression
slopes of V1 vs V5 activity under the influence of attention

Modulation of V1—-V5 by
attention

Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in
neuroimaging. Neuroimage. 1997 Oct;6(3):218-29. doi: 10.1006/nimg.1997.0291. /



. ______________________________________________________________________________ Psychophysica| Interaction (PP|)

* PsychoPhysiological Interactions (PPIs) analysis concerns task-specific changes in the relationship
between different brain areas’ activity

* PPl aims to identify regions whose activity depends on an interaction between Psychological factors (the
task) and Physiological factors (the time course of a region of interest)

- N @

S — —

| h ll . ‘ _\
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TaskxROI 4, e r

s N
@ D A K od B 09 -S94 A
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x P) |

Interaction (V1
M: ffect (V1)

+ Constant

Limitation: Low statistical power !
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* Two possible questions:

A. How contribution of one region to another is influenced by the experimental context

B. How an area’s response to an experimental context is modulated by input from another region

* Mathematically equivalent! But... one may be more neurobiologically plausible

A B
- Activityin Experimental Activityin Experimental
Attent'on region k factor region k factor
~ M X g
X g ‘ Sr
. ' v

o xg

L Sl )

L R v

Responsein region i

Response in region |
EXp TR, TN XE,

EXp YR, TN xR,

: i Contribution dependent
- . . Context specific modulation change in responses to
4l d

) anexperimental context

of stimulus reponses

N w Limitation: Only allows modeling contributions from a single area (nb: generalized PPI)

o
TRA



= - Structural Equation Modeling SEM

* Based on a graphical model representing "neuroscience hypothesis generation":

" How does attention load modifies connectivity in
a network of areas activated during a visual task"

/

/

\ )
?a f
N % Chaminade, T. and Fonlupt, P. (2003), Changes of effective connectivity between the lateral and medial parts of the W

prefrontal cortex during a visual task. European Journal of Neuroscience, 18: 675-679.



e Structural Equation Modeﬁng SEM

* Based on a graphical model representing "neuroscience hypothesis generation":
(A) selecting regions or nodes of the network
(B) obtaining the anatomical model or edges of the network
(C) calculating the interregional covariance or correlations matrix from the fMRI data
(D) estimating the parameters and verifying the model's fit

Path coefficient

OT — Temp 0.392
Pcu — ACC 0.422
MeF — ACC 0.287
PF1 — Temp 0.316
SPL — Pcu —0.138
MeF — Pcu 0.269
Pcu — MeF 0.269
Pcu — SPL —-0.138
PF2 — PF1 0.626
PF2 — MeF -0.210
MeF — PF2 -0.210
OT — SPL 0.661
PF1 —OT 0.791
Interaction
Attention x MeF — PF2 —0.289
Attention x PF2 — MeF -0.231
Attention x SPL — Pcu —-0.246
Attention x PF2 — PF1 0.198

Lateral areas

Limitation: Linear statistics, no generative model. Tr



= Dynamic Causal Modeling

* Generic Bayesian framework for inferring hidden neuronal states from measured brain activity
* Dynamic: linear and non-linear differential equations describe hidden neuronal dynamics
* Causal: describe how dynamics in one area cause dynamics in another area, and modulation by experimental manipulations
* Bayesian: each parameter is constrained by prior distribution
* Neurophysiologically interpretable: Hypotheses are constrained by the underlying biological hemodynamic model

(1) Neuronal (3) Haemodynamic fMRI BOLD
activity response response
(2) Neurovascular (4) Detection by

: | couplin MRI scanner
Stimulus A X g = o oo.© '
- b—-——‘ L . o o o —_— - y
. , o)
-

or modulation
in background

INPUT
(controlled)
OUTPUT
(observed)

activity \ HIDDEN STATE VARIABLES } .
Hemodynamic model ‘
Neuronal dynamics (Z) transformed into
BOLD-signal (Y) via p
n sé/ hemodynamic response function (A) 2



Attention

STIM
Motion

Z is the underlying Neuronal state
What is modeled is Z evolution through time
dZ/dt=F(Z,u,0)
Z: current state
(ZV1' ZVS' ZSPC)
u: external input

STIM (C): influences of inputs on regional activity
Motion, Attention (B): change in coupling due to input

0: intrinsic connectivity (A)

s (J) 8
zZ = A+ZIIJB z+ Cu
n w f—l

DCM: Equations

Neural state (Z)

Change in
vasodilatory signal

Change in blood flow

Change in blood volume
and desoxyhemoglobin
volume

Bold signal (Y)

| | ””I ‘ u stimulus functions

|

neural state  |dx _[‘“ 2"1,. ,.,)_H(.“
equation dr 2

Vasodilatory signal
$mx=Kx=p(f=1)
5
! s
flow induction (fCBF)
hemodynamic f=s
state ,l
equations ’

Balloon model
hang, o - changes in dfh

|' T 2 = [ E(LE )/ E, =v'" '"I
v q

Ag.v)= %-H.[k,(l -q).k,(l - %)-vkx(l -v)]

ky = 430,E,TE .
k, = e, TE BOLD signal .
PR change equation
7
~h
[
\ IRw



Model 1: Attention
modulates forward

Attention
Motion

STIM

Extract local activity

I ﬁﬂg“;{ \W
M i \

I L i

I

!
\/
®

N 4

Model 2: Attention
modulates backward

Attention

Hypotheses:

Example of DCM analysis and results

Attending to motion influences

Motion

STIM

Define the models (Here: model 2)

endogenous (fixed) connections from
123
Vi1 ®

V52 S S
sPC3 "

Motion  on regions... and connections

vi
V5
SPC

Photic  on regions... and connections

Vi ®
C w
sPC

Attention on regions... and connections

Vi

B: °

Logrendence (latve)

response to motion stimulus by
affecting Forward (V1-->V5) or
Backward (SPC-->V5) connections

Models evaluation
and comparison

Bayesian Model Selecton: FFX

/

/
o
TRA

Model 1 wins /




* Many toolbox have been proposed to
investigate connectivity

e Conn is becoming a standard given its large
number of possible corrections during

preprocessing and large amount of possible

analyses

=)

Brain Connectivity
Toolbox!"]

Brain Modulyzer 12!
BrainNet viewer!®!

Brainwaver!*]
C-PACE
CONN®!

Connectome workbench
cPPI[7]
DCME]

FATCATI]

FSFCl'0
Fubraconnex!'"]
GIFT(12]
gPPIl"3]

Graph Theoretic GLM
Toolbox!14]

Graphvarl®]

MELODIC!®]

Graph-theoretical analyses of functional connectivity = Matlab

Explore Hierarchical Processes of the functional
brain networks

Brain network visualization tool

Brain connectivity extraction and analysis
Functional connectivity analysis pipeline
Functional connectivity analysis and display tool

Visualization and discovery tool
Task-related functional connectivity analysis

Dynamic Causal Modelling analysis
Functional and tractographic connectivity analysis

Seed-based functional connectivity analysis
Tool for visual analysis of functional connectivity
Independent component analysis

Task-related functional connectivity analysis

Graph theory analysis and fMRI preprocessing
pipeline

Graph-theoretical analysis tool

Independent component analysis

Python

Matlab

R
Python
Matlab

Python
Matlab
Matlab

C

Shell
C
Matlab
Matlab

Matlab
Matlab

C



Conn toolbox, a swiss knife for connectivity analyses

* Developed since 2010 and regularly
updated and improved (12/2020)

* Full pipeline for import (automatic
for BIDS datasets and fMRIPrep
outputs), preprocessing, denoising,
and quality assessment

* Several implementations of
connectivity measures

* Several second-level inferences

available
A

Whitfield-Gabrieli, S; Nieto-Castanon, A (2012). "Conn: a functi @;\
connectivity toolbox for correlated and anticorrelated brain networks".

Brain Connect. 2: 125—41. doi:10.1089/brain.2012.0073




= - Conn Toolbox processing pipeline

Prepares data
(realignment,
unwarp? field-map
correct? slice-timing

correction?

coregistration/

indirect

normalization/ direct Removes

normalization? physiological,
Imports data outlier identification, artifacts, residual
into CONN smoothing) subject movement

effects
Functional
& Structural Preprocess Denoise
data

'
Setup QU Setup GUI 2

Experiment
design

Setup GUI
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Denoising voxel-to-voxel correlations Denoising BOLD time-series

Histogram after denoising .-"f‘ -
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» Histograms centered and overlapping » No visible global effects
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Conn Connectivity measures

SEED-BASED CONNECTIVITY MEASURES GRAPH MEASURES (ROI-LEVEL)
» Seed-Based Connectivity (SBC) maps nodes = ROIs, and edges = supra- threshold connections
» Multivariate Seed-Based Connectivity (mSBC) maps a ™
» Weighted Seed-Based Connectivity (wSBC) maps ) :.. .: -/ -\
» Generalized Psycho-Physiological Interactions (gPPl) maps @ ”.. Wy L
NB: similar can be done with target ROl instead of voxels e @ %o ‘o o
providing ROI-to-ROI Connectivity (RRC) matrices 5 :. > . .; o’ g
'o ........ ..‘ .ﬁ °
NETWORK MEASURES (VOXEL-LEVEL) o v

E Intrinsic Connectivity (IC)

»Degree & Cost

» Average path distance
» Clustering Coefficient

» Local Efficiency

» Betweenness Centrality

Group Differences

» Global Correlation (GCOR)

> Local Correlation (LCOR) DYNAMIC CONNECTIVITY MEASURES

» Multivariate Correlation (MCOR) (group-MVPA) » Dynamic Independent Component Analyses (dyn-ICA)

» Independent Component Analyses (group-ICA) L
N Qé? Principal Component Analyses (group-PCA) Tow
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Conn Connectivity rendering
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Conn Application: Graphs Theory measurements

>
: . . . g 4-ASD 2
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Limitations

* Despite its potential interest, Effective Connectivity analyzes are scarcely used because of:

1) controversies about interpretations,

2) low statistical power leading to Type 2 errors (false positive).

* These analyzes are prone to artifacts in the form of spurious correlations (Type 1 error) caused by:
1) Participants movements.
2) Physiological fluctuations (cardiac or respiratory activity).
3) Main effect of tasks.

4) Global signal fluctuations.
5) Signals emerging in areas likely to produce physiological artifacts (eg ventricles).

» Preprocessing of the data is crucial, but still improving (eg Conn)

" jé/ » Caution is required at all levels of analysis and interpretation
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