Multivariate pattern analysis in brain imaging

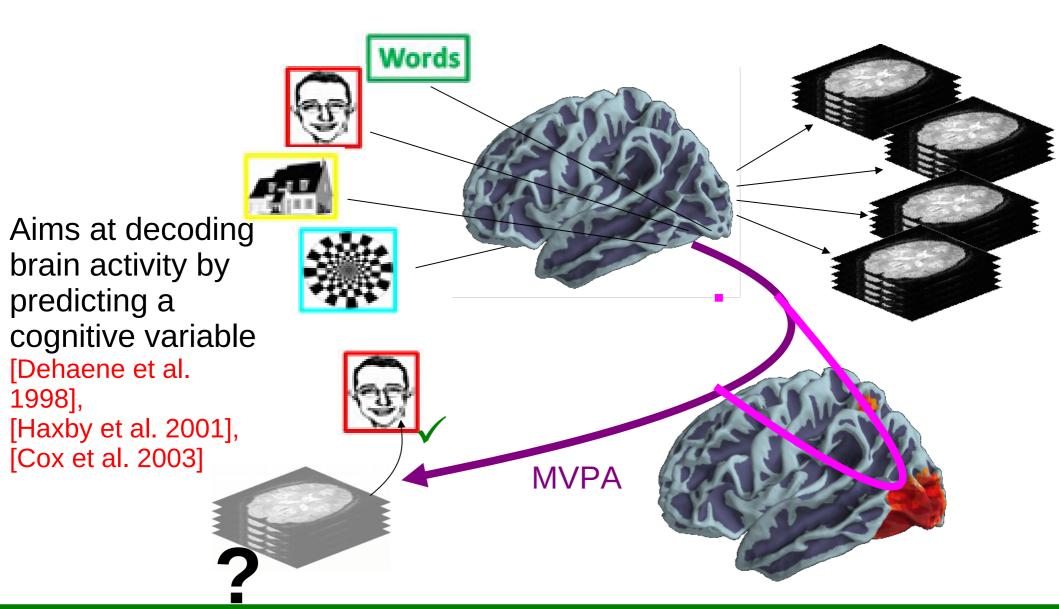
Bertrand Thirion

bertrand.thirion@inria.fr

Bertrand Thirion

Basic concepts

Multivariate pattern analysis



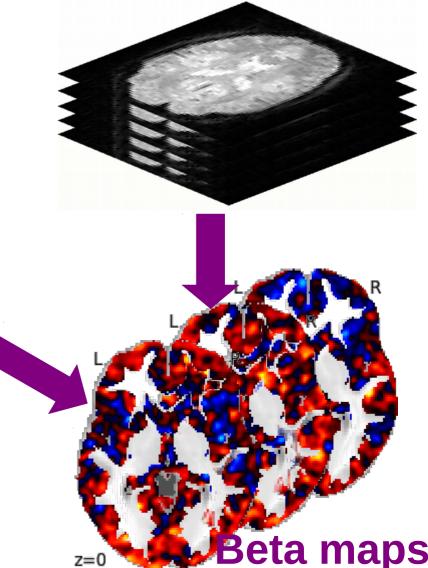
A pipeline view

Experimental events \rightarrow trial-wise design matrix

0 25 50 75 scan number 100 125 150 175 · \$

Each event belongs to a class

FMRI data



11/2019

Bertrand Thirion

A pipeline view

trial-wise design matrix

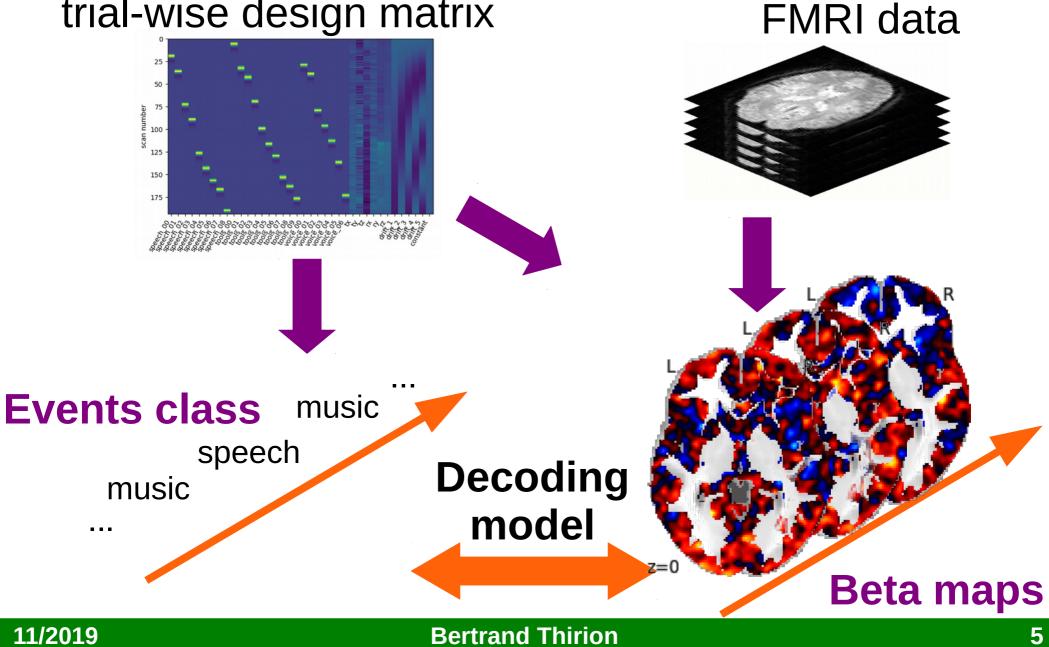
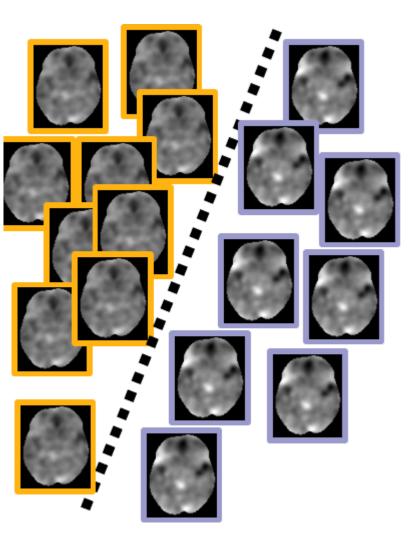


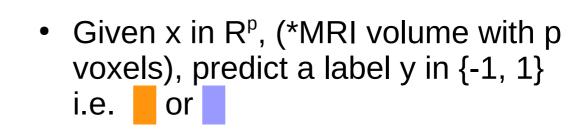
Image-based classification



Given x in R^p, (*MRI volume with p voxels), predict a label y in {-1, 1}
 i.e. or

or better the class probability Proba(y = 1|x)

Image-based classification



or better the class probability Proba(y = 1|x)

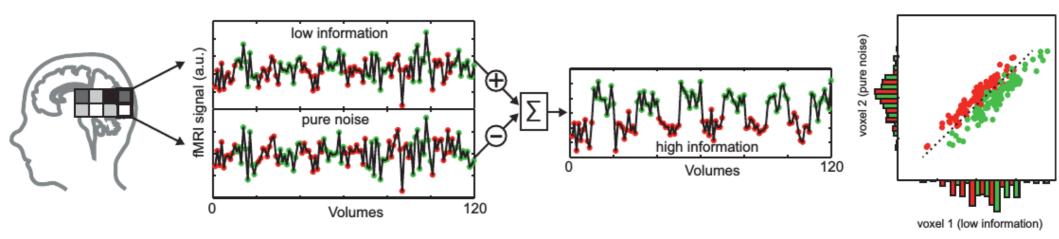
• Use of logistic regression: learn the weight w and bias b such that

 $(\hat{\mathbf{w}}, \hat{b}) = \operatorname{argmin}_{\mathbf{w}, b} \sum_{i=1}^{n} \log \left(1 + \exp\left(-y_i(\mathbf{x}_i^T \mathbf{w} + b)\right)\right)$

• With regularization

 $(\hat{\mathbf{w}}, \hat{b}) = \operatorname{argmin}_{\mathbf{w}, b} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i (\mathbf{x}_i^T \mathbf{w} + b) \right) \right) + \frac{\lambda}{\|\mathbf{w}\|_2^2}$

The dream case for MVPA

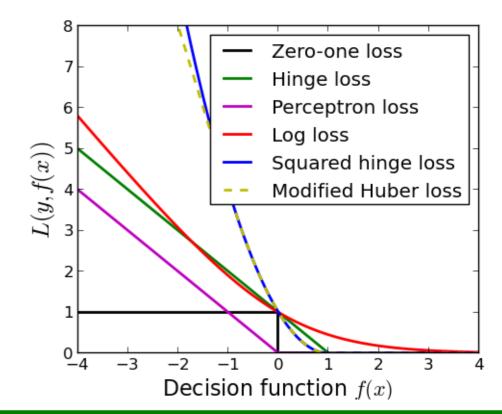


- Individual voxels corrupted by a noise source \rightarrow weakly significant
- Their difference is strongly task related: accurate classification [Haufe et al. nimg 2013, Haynes neuron 2015]

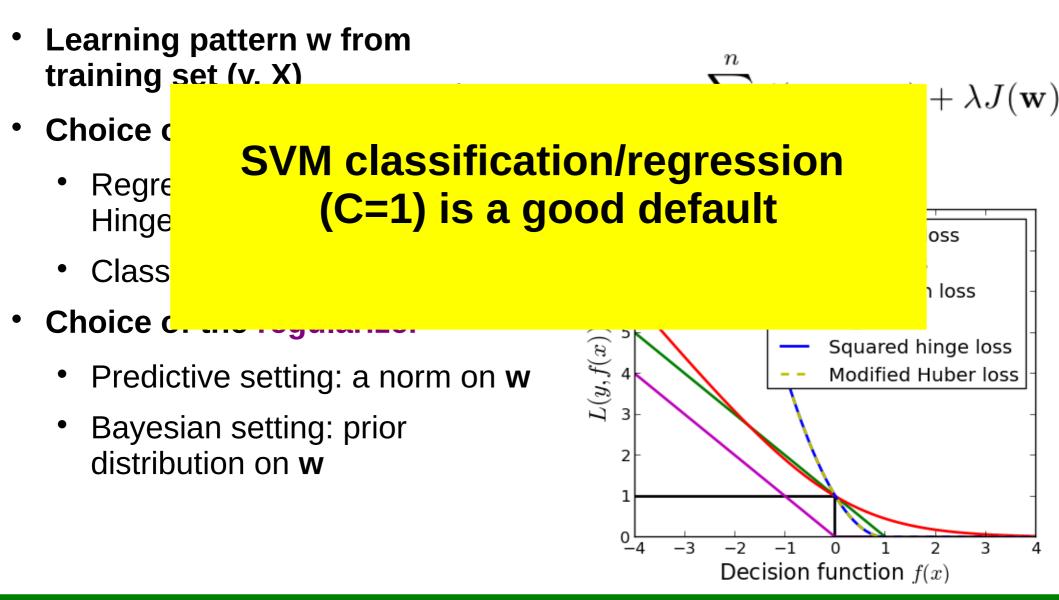
Training a predictive model

- Learning pattern w from training set (y, X)
- Choice of the loss
 - Regression: Least-squares, Hinge, Huber
 - Classification: Hinge, logistic
- Choice of the regularizer
 - Predictive setting: a norm on **w**
 - Bayesian setting: prior distribution on w

$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^p} \sum_{i=1}^n \ell(\mathbf{y}_i, \mathbf{X}_i \mathbf{w}) + \lambda J(\mathbf{w})$$



Training a predictive model



Evaluation of the decoding

Measure prediction accuracy

https://scikit-learn.org/stable/modules/model_evaluation.html

Regression \rightarrow Explained variance ζ : **Classification score:**

$$(\mathbf{y^t}, \mathbf{\hat{y}}) = rac{\mathsf{var}(\mathbf{y^t}) - \mathsf{var}\left(\mathbf{y^t} - \mathbf{\hat{y}}
ight)}{\mathsf{var}(\mathbf{y^t})}$$

$$\kappa(\mathbf{y^t}, \mathbf{\hat{y}^t}) = \frac{\sum_{i=1}^{n^t} \delta(y_i^t, \hat{y}_i^t)}{n^t}$$

 \rightarrow amount of information about y in the brain data

ζ

Cross validation

X = np.random.randn(*fmri_masked.shape) # replace with null data
prediction = svc.fit(X, conditions).predict(X)
print((prediction == conditions).sum() / float(len(conditions)))

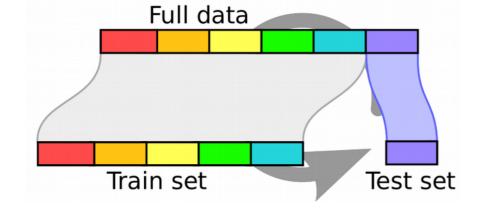
If test data = training data, you get 100% accuracy, even when your data are noise

1.0

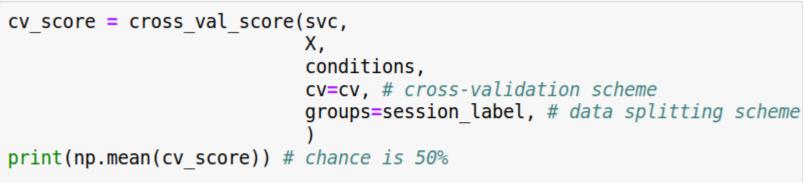
Cross validation

X = np.random.randn(*fmri_masked.shape) # replace with null data
prediction = svc.fit(X, conditions).predict(X)
print((prediction == conditions).sum() / float(len(conditions)))

If test data = training data, you get 100% accuracy, even when your data are noise



With cross-validation, accuracy is unbiased



0.4212962962962962

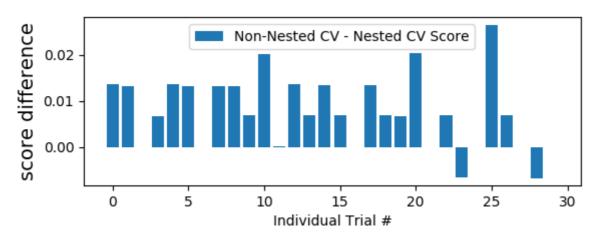
11/2019

1.0

Bertrand Thirion

Parameters to tune

- Parameter/model selection \rightarrow based on accuracy
- CAVEAT: do not do it with the scoring loop



https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.htm

Need nested loop "nested cross validation"

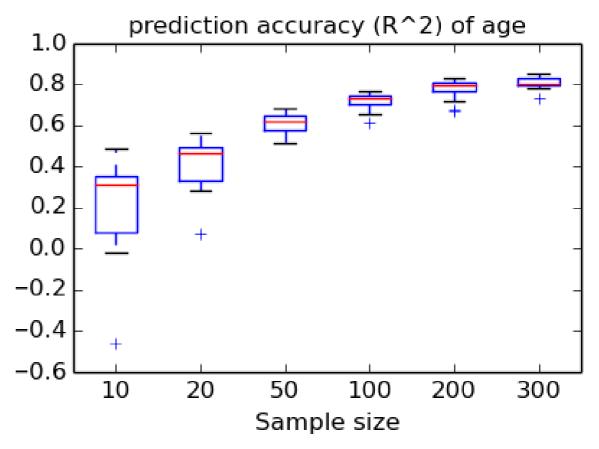
Nested cross-validation Full data Outer loop Decoding set Validation set Nested loop Train set Test set

- One loop to tune inner parameters
- One loop to get the accuracy

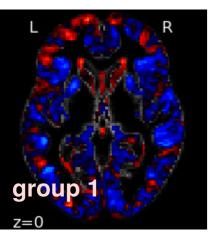
Common pitfalls

Learning curve: how prediction improves with n

 Predict the age of a subject given gray matter density maps (OASIS dataset, n=403)



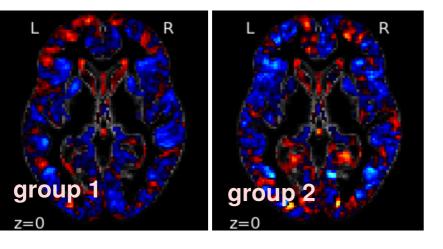
The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers



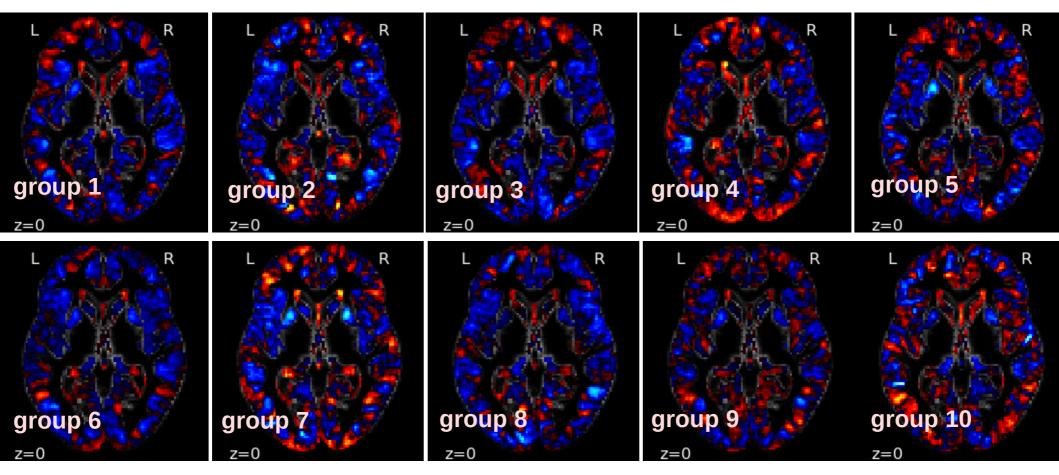
group 6

Variability actually worse than for univariate analysis !

The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers

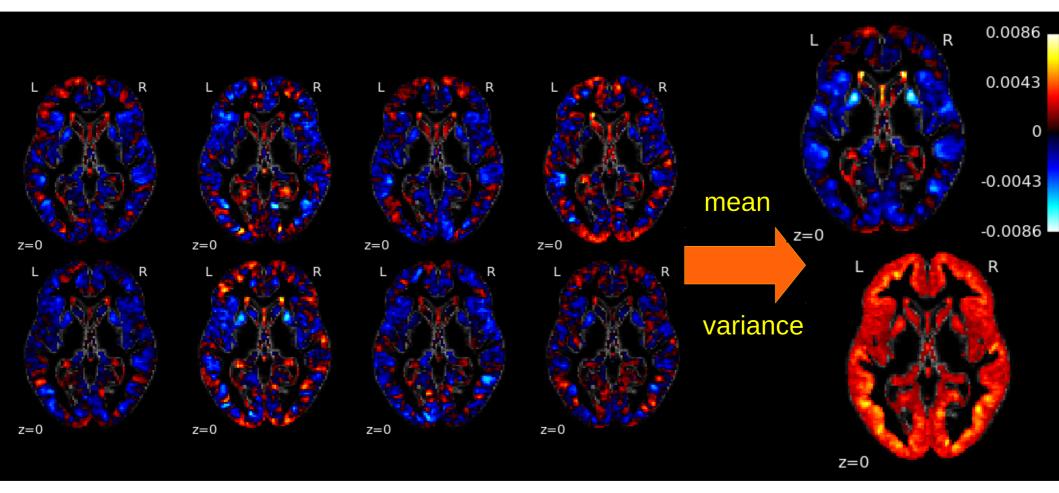


The weight map depends on the batch of subject considered (bootstrap): One question, different datasets, different answers

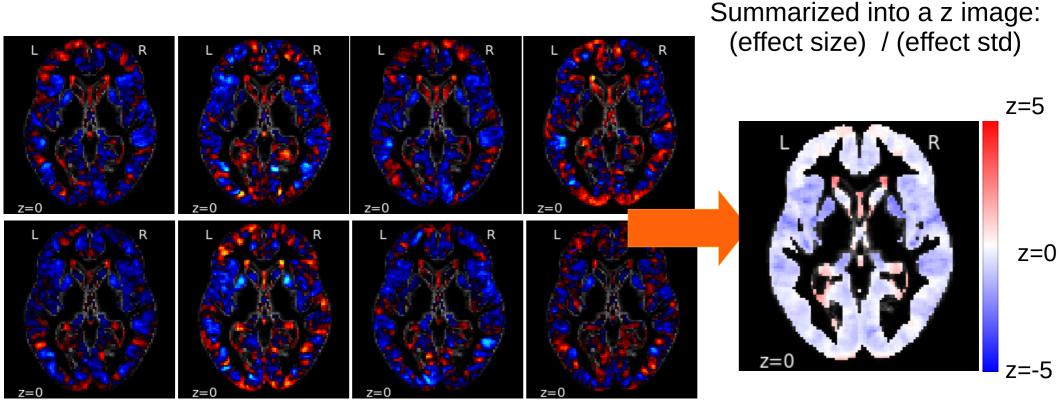


Variability actually worse than for univariate analysis !

The weight map depends on the batch of subject considered (bootstrap): One question, different dataset, different answers



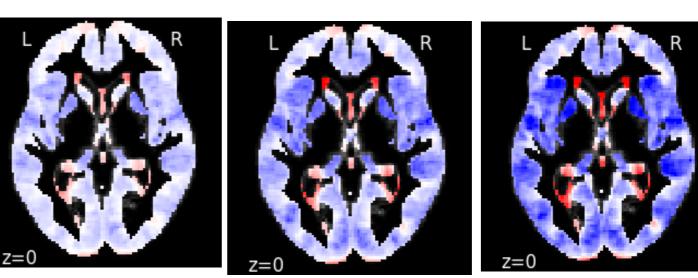
The weight map depends on the batch of subject considered (bootstrap): One question, different dataset, different answers



n=10

n=20

Weight maps for age prediction / OASIS



z=5

z=0

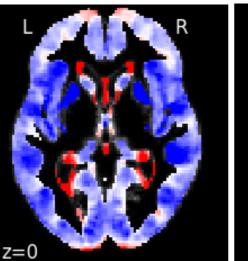
n=100

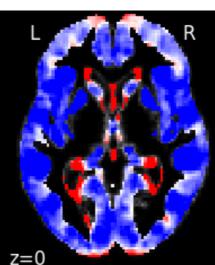
n=200

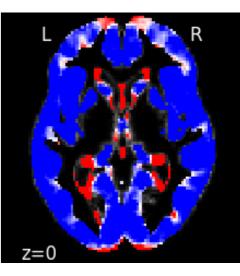
n=300

n=50

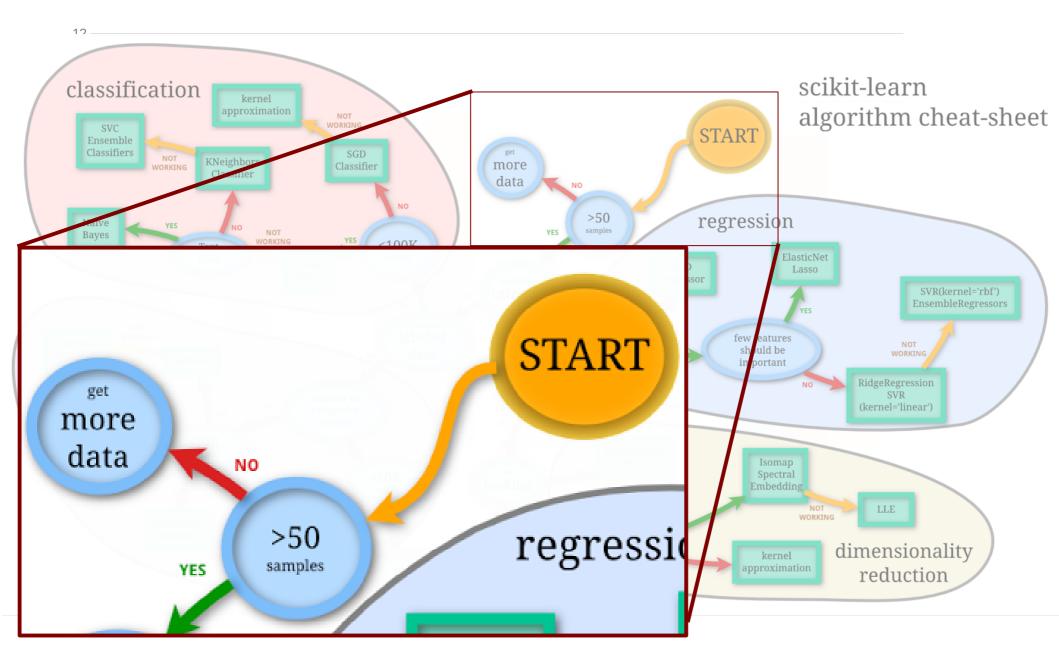
(effect size estimated by bootstrap)



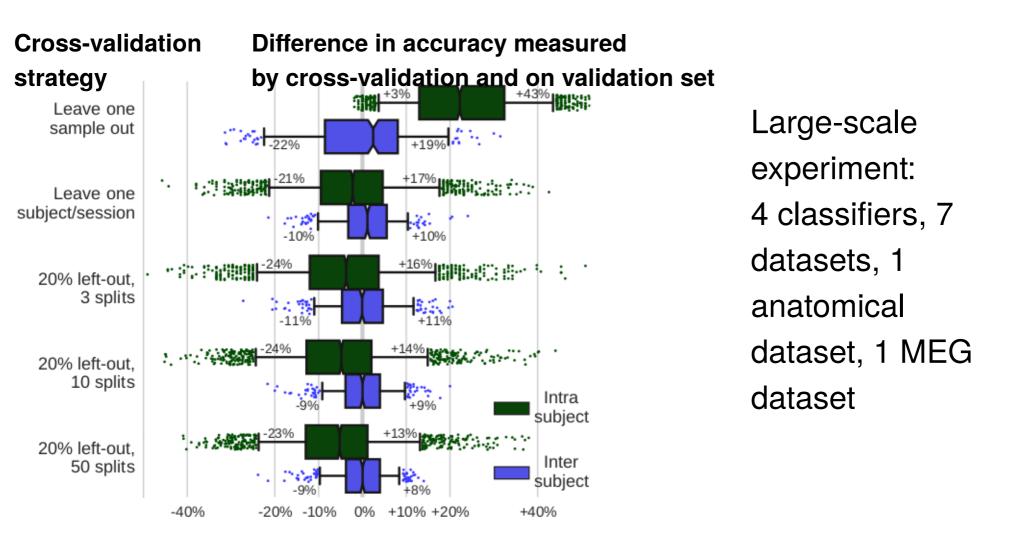




Multivariate analysis



Sample size & cross-validation

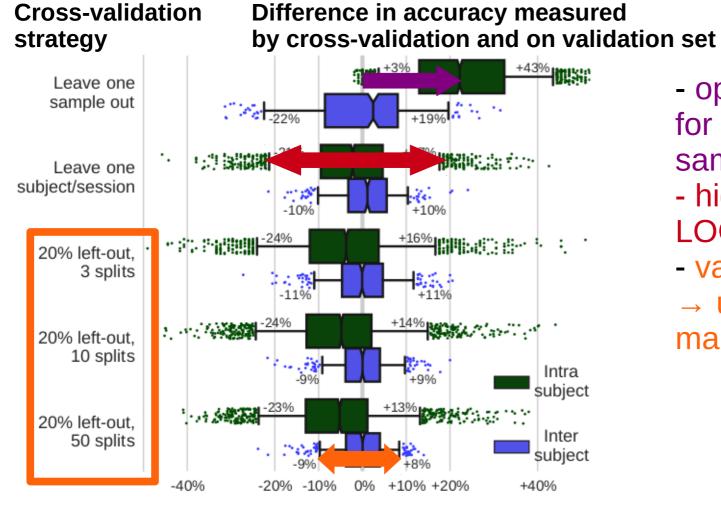


cross-validation < validation set

cross-validation > validation set

[Varoquaux et al. NIMG 2016]

Sample size & cross-validation



- optimistic bias in LOO for non-independent samples

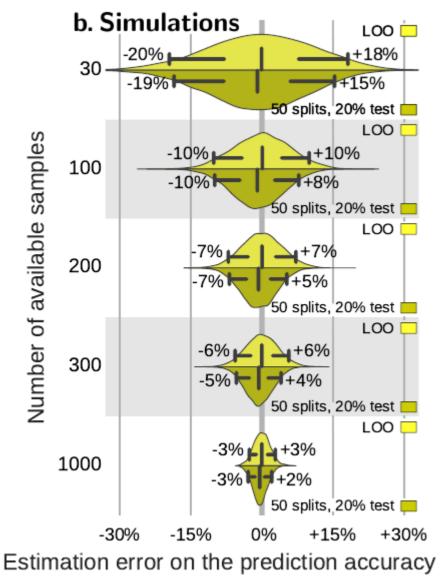
- higher variance in LOO
- variance large overall
 → use shuffle-split with many splits

cross-validation < validation set

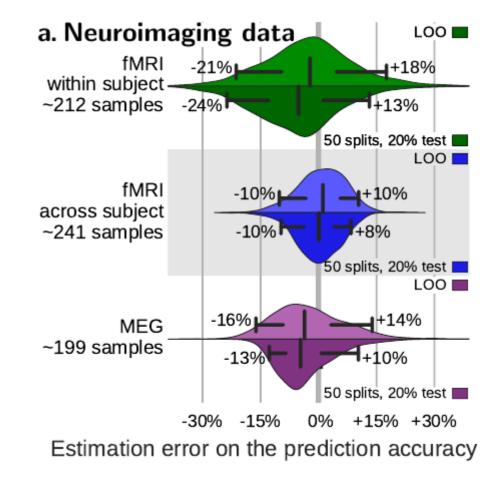
cross-validation > validation set

[Varoquaux et al. NIMG 2016]

Sample size and cross-validation



Rule of the thumb: uncertainty in prediction decreases with $1/\sqrt{n}$



[G. Varoquaux nimg 2017]

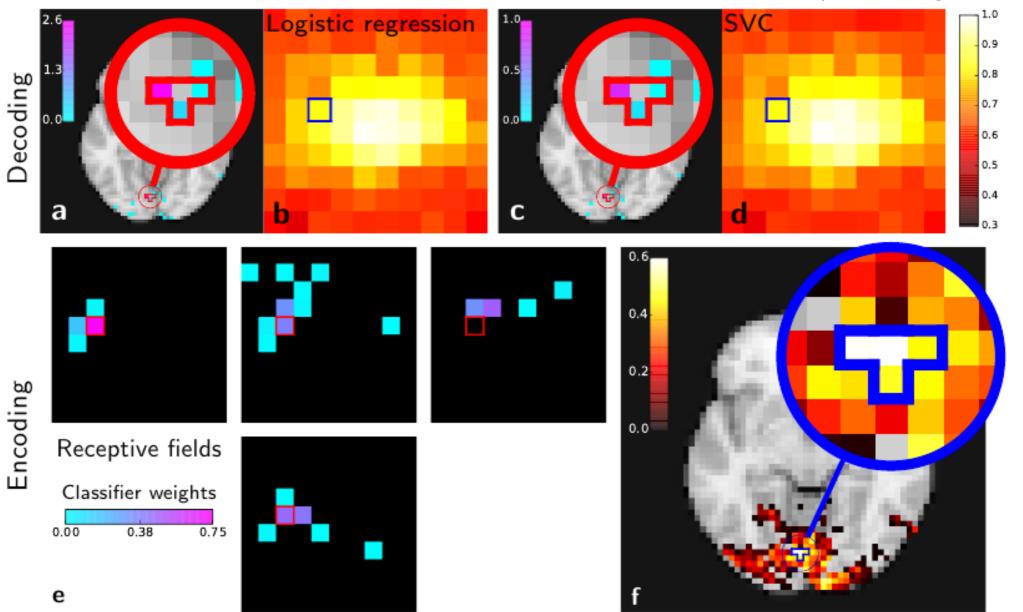
Why don't we use deep neural networks ?

 They are expensive, hard to tune, hard to interpret and do not bring performance gains in most neuroimaging settings

https://www.biorxiv.org/content/10.1101/473603v1

Do it yourself !

http://nilearn.github.io/



11/2019

Bertrand Thirion