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Multivariate pattern analysis

Aims at decoding
brain activity by
predicting a
cognitive variable
Dehaene et al.
1998],

Haxby et al. 2001],
[Cox et al. 2003]
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A pipeline view

Experimental events

FMRI data

- trial-wise design matrix

J=quunu ueas

Bertrand Thirion



A pipeline view
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Image-based classification

* Given x in R?, (*MRI volume with p
voxels), predict a label y in {-1, 1}

ie. [lor

or better the class probability
Proba(y = 1|x)
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Image-based classification

* Given x in R?, (*MRI volume with p
voxels), predict a label y in {-1, 1}
lL.e. | or

or better the class probability
Proba(y = 1|x)

* Use of logistic regression: learn the
weight w and bias b such that

s

(W,b) = argming, , Z log (1 + exp (—yi(x?w + b)))
i=1

* With regularization

b) = argmin,, , Z log (l + exp (—yi(xgw + b))) + )\HWH%
=1

11/2019 Bertrand Thirion




The dream case for MVPA

low information

: pure n::Jise : : z —
] high information
[ i 0 Volumes 120

0 Volumes 120

voxel 2 (pure noise)

fMRI signal (a.u.)

voxel 1 (low information)

* Individual voxels corrupted by a noise source — weakly significant
* Their difference is strongly task related: accurate classification

[Haufe et al. nimg 2013, Haynes neuron 2015]
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Training a predictive model

* Learning pattern w from

training set (y, X) W = argmi

Choice of the loss

* Regression: Least-squares,

Ny cpe Z (yi, Xiw) + AJ(w)

Hinge, Huber

* Classification: Hinge, logistic
Choice of the regularizer

* Predictive setting: a norm on w

Zero-one loss
Hinge loss
Perceptron loss
Log loss

Squared hinge loss |

* Bayesian setting: prior
distribution on w

0o 1 2

Decision function f(z)
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Training a predictive model

* Learning pattern w from

training set (v. X) | — |
J y + AJ(w)
* Choice ¢ L ) )
SVM classification/regression
* Regre i
Hinge (C=1) is a good default
* Class oee
* Choicec. ... ._......__. S _
E — Squared hinge loss
* Predictive setting: anormonw 74 Modified Huber loss |
3 3

* Bayesian setting: prior
distribution on w

°2 =3 2 1 o 1 2 3 a4
Decision function f(z)
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-
Evaluation of the decoding

Measure prediction accuracy
https://scikit-learn.org/stable/modules/model_evaluation.htmi

Regression - Classification score:
Explained variance ( :

. Z?:l 5(y_ft1 j}ft)

nt

var(y*) — var (y* — §) gt

¢y 9) = var(y")

— amount of information about y in the brain data
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Cross validation

If test data =
X = np.random. randn(*fmri masked.shape) # replace with null data training data, you
prediction = svc.fit(X, conditions).predict(X) 0
print((prediction == conditions).sum() / float(len(conditions))) QEt 100% aCCUFaCy,
10 even when your

data are noise

11/2019
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e
Cross validation

If test data =

X =d|_1p1.:r_'andum.ran?ni‘*{‘;mri_nglﬁd.sl;ape}di_ﬁ ﬁﬁ%ace with null data training data, you
prediction = svc.fit(X, conditions).predic
print((prediction == conditions).sum() / float(len(conditions))) QEt 100% aCCUFaCy,

10 even when your

data are noise
Full data

[
Train set Test set

cv_score = cross val score(svc,
X,
conditions,
cv=cv, # cross-validation scheme
groups=session label, # data splitting scheme

)

print(np.mean(cv_score)) # chance is 50%

With cross-validation,
accuracy is unbiased

0.4212962962962962
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e
Parameters to tune

 Parameter/model selection —» based on accuracy
 CAVEAT: do not do it with the scoring loop

B Non-Mested CV - Nested CV Score |
T T T T T
4] 5 10 15 20 30

2

e
o
[

score difference
o o
(48] (=]
] =

T
5
Individual Trial #

https://scikit-learn.org/stable/auto _examples/model_selection/plot_nested cross validation_iris.htnr

* Need nested loop “nested cross validation”
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Nested cross-validation

Full data

Outer loo

Decoding set
Nested lo

[ 1
Train set Test set

* One loop to tune Inner parameters

Validation set

« One loop to get the accuracy
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Common pitfalls
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Learning curve: how prediction
Improves with n

predlctmn accuracy (R™2) ::-1‘ age

1.0
* Predictthe age ofa os} = = =
subject given gray ~ %6r . & '
matter density maps ‘[ =5 Lo
(OASIS dataset, ES -
n=403) 0ol
~0.4}
-0.6 J'r

10 20 50 100 200 300
Sample size



Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

Variability actually worse than for univariate analysis !
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Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

L R L L L L R
group:1 group:2 group 3 group 4 group:5 *
z=0 z=0 z=0 z=0 z=0 »
L R L L L L L R
; *
- .
group'6 group 7 group ? group 9 group:10

Variability actually worse than for univariate analysis !
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One question, different dataset, different answers




Weight maps for age prediction | OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers

Summarized into a z image:
(effect size) / (effect std)




Weight maps
for age
prediction /
OASIS

Z=5
H (effect size
estimated by
bootstrap)




Multivariate analysis

192

classification # scikit-learn

kernel
approximation

: - o algorithm cheat-sheet

SVC WORKING
Ensemble START

=
Classifiers fr SGD get
NOT :
: WORKING KNeigh l:er Classifier more
s data NO
NO
r > -
v L. ) regressign
Bayes NOT YES sampies
- WORKING f L
ElasticNet
Lasso
SVR(kernel="rbf")
A EnsembleRegressors

NOT

shpuld be WORKING
infportant
"
. :
" NO . RidgeRegression

SVR
(kernel="linear’)

Isomap I
Spectral
Embedding

NOT | LLE

WORKING

ke dimensionality
| approximation reduction




Sample size & cross-validation

Cross-validation Difference in accuracy measured

strategy by cross-valggiliii iid on validation set
Leave one ) m!;ﬂi‘
o Large-scale

sample out -
- -~ '.'.

experiment:
4 classifiers, 7
datasets, 1

Leave one
subject/session

20% left-out, ~

3 splits .
P anatomical
209 left-out dataset, 1 MEG
10 splits
Intra dataset
subject
20% left-out, bt LY o
50 splits - .
P I A Yo — subject
-40% -20% -10% 0% +10% +20% +40%

cross-validation < validation set cross-validation » validation set
[Varoquaux et al. NIMG 2016]



Sample size & cross-validation

Cross-validation

strategy

Leave one
sample out

Leave one
subject/session

20% left-out, ~

3 splits

20% left-out,
10 splits

20% left-out,
50 splits

cross-validation < validation set

Difference in accuracy measured
by cross-validation and on validation set

+4.3% m!?!‘;i?

-20% -10%

0% +10% +20%

- optimistic bias in LOO
for non-independent
samples

- higher variance In
LOO

- variance large overall
— use shuffle-split with
many splits

cross-validation > validation set

[Varoquaux et al. NIMG 2016]



Sample size and cross-validation

b. Simulations LOO [

30

splits, 20% test [
LOO ]

7
@ -10% +10%
2 100 :
- -10% +8%
ﬁ splits, 20% test [
Lo LOO [
3 7904 | Dy 7%
T 200 |
@ —?WE%
=
© 50 splits, 20% test [
O LOO ]
2 300
=
g 50 splits, 20% test [
LOO [
3% +3%
1000
-3% B +2%

50 splits, 209 test [
-30% -15% 0%  +15% +30%
Estimation error on the prediction accuracy

Rule of the thumb: uncertainty in
prediction decreases with 1/ Vn

a. Neuroimaging data LOO

fMRI 2104
within subject
~212 samples

LOO

fMRI
across subject
~241 samples

0 splits, 20% test Il
LOO

MEG +14%

~199 samples +10%

50 splits, 20% test I
-30% -15% 0% +15% +30%

Estimation error on the prediction accuracy

[G. Varoquaux nimg 2017]



Why don’t we use deep neural
networks ?

* They are expensive, hard to tune, hard to
iInterpret and do not bring performance gains in
mMost neuroimaging settings

https://www.biorxiv.org/content/10.1101/473603v1



http://nilearn.github.io/

1.0

Receptive fields

Encoding

Classifier weights

L . i

0.00 0.38 0.75
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