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Basic concepts
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Multivariate pattern analysis

?

MVPA

Aims at decoding 
brain activity by 
predicting a 
cognitive variable 
[Dehaene et al. 
1998], 
[Haxby et al. 2001], 
[Cox et al. 2003]

 
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A pipeline view
Experimental events 
→ trial-wise design matrix

FMRI data

Each event belongs to a class
Beta maps
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A pipeline view
trial-wise design matrix FMRI data

Events class

Beta maps

music
speech

music
...
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Decoding 

model
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Image-based classification

● Given x in Rp, (*MRI volume with p 
voxels), predict a label y in {-1, 1} 
i.e.  █ or █

or better the class probability 
Proba(y = 1|x)
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Image-based classification

● Given x in Rp, (*MRI volume with p 
voxels), predict a label y in {-1, 1} 
i.e.  █ or █

or better the class probability 
Proba(y = 1|x)

● Use of logistic regression: learn the 
weight w and bias b such that

●  With  regularization
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The dream case for MVPA

● Individual voxels corrupted by a noise source → weakly significant 

● Their difference is strongly task related: accurate classification

[Haufe et al. nimg 2013, Haynes neuron 2015] 
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Training a predictive model

 Learning pattern w from 
training set (y, X)

 Choice of the loss

 Regression: Least-squares, 
Hinge, Huber

 Classification: Hinge, logistic
 Choice of the regularizer

 Predictive setting: a norm on w
 Bayesian setting: prior 

distribution on w
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Training a predictive model

 Learning pattern w from 
training set (y, X)

 Choice of the loss

 Regression: Least-squares, 
Hinge, Huber

 Classification: Hinge, logistic
 Choice of the regularizer

 Predictive setting: a norm on w
 Bayesian setting: prior 

distribution on w

SVM classification/regression 
(C=1) is a good default
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Evaluation of the decoding
Measure prediction accuracy

Regression → 
Explained variance ζ :

Classification score:

→ amount of information about y in the brain data

https://scikit-learn.org/stable/modules/model_evaluation.html
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Cross validation
If test data =  
training data, you 
get 100% accuracy, 
even when your 
data are noise
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Cross validation
If test data =  
training data, you 
get 100% accuracy, 
even when your 
data are noise

With cross-validation, 
accuracy is unbiased
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Parameters to tune

● Parameter/model selection → based on accuracy
● CAVEAT: do not do it with the scoring loop

● Need nested  loop “nested cross validation”

https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
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Nested cross-validation

● One loop to tune inner parameters
● One loop to get the accuracy 
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Common pitfalls



Learning curve: how prediction 
improves with n

● Predict the age of a 
subject given gray 
matter density maps 
(OASIS dataset, 
n=403) 



Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group 1

group 6

Variability actually worse than for univariate analysis !
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Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different datasets, different answers

group 1 group 2 group 3 group 4 group 5

group 6 group 7 group 8 group 9 group 10

Variability actually worse than for univariate analysis !



Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers

mean

variance



Weight maps for age prediction / OASIS

The weight map depends on the batch of subject considered (bootstrap):
One question, different dataset, different answers

Summarized into a z image:
(effect size)  / (effect std)

z=-5

z=5

z=0



Weight maps 
for age 

prediction / 
OASIS

(effect size 
estimated by 

bootstrap)

z=-5

z=5

z=0

n=100 n=200 n=300

n=10 n=20 n=50



Multivariate analysis
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Sample size & cross-validation

Difference in accuracy measured
by cross-validation and on validation set

Cross-validation
strategy

cross-validation < validation set cross-validation > validation set

Large-scale 
experiment:
4 classifiers, 7 
datasets, 1 
anatomical 
dataset, 1 MEG 
dataset

[Varoquaux et al. NIMG 2016]



Sample size & cross-validation

Difference in accuracy measured
by cross-validation and on validation set

Cross-validation
strategy

cross-validation < validation set cross-validation > validation set

- optimistic bias in LOO 
for non-independent 
samples
- higher variance in 
LOO
- variance large overall
→ use shuffle-split with 
many splits

[Varoquaux et al. NIMG 2016]



Sample size and cross-validation
Rule of the thumb: uncertainty in 
prediction decreases with 1/ √n

[G. Varoquaux nimg 2017]



Why don’t we use deep neural 
networks ?

● They are expensive, hard to tune, hard to 
interpret and do not bring performance gains in 
most neuroimaging settings

https://www.biorxiv.org/content/10.1101/473603v1
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Do it yourself !
http://nilearn.github.io/
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