The ABCD study : leveraging a cohort for developmental science

March 6 2025

Adolescent Brain Cognitive Development Teen Brains. Today's Science. Brighter Future.

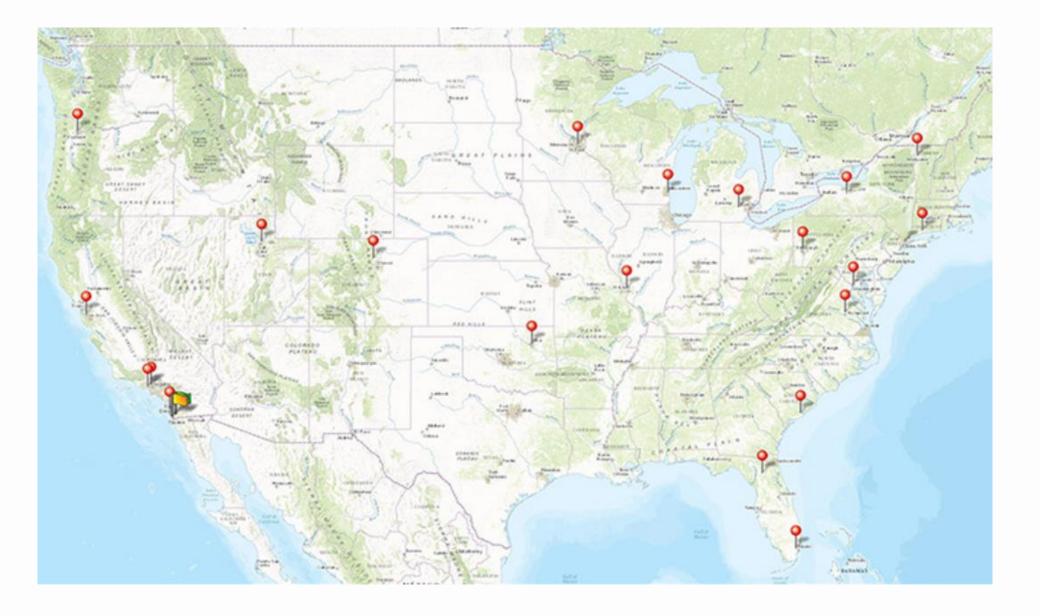
CANOP team, Institut de Neurosciences de la Timone

Paysserand Andrea, PhD student

The Adolescent Brain Cognitive Development

Start in 2015, 10 years ago !!! **2018** : open data sharing first release

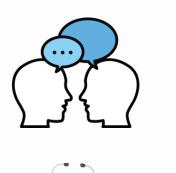
Objectives : initially focused on examining risk and resiliency factors associated with **substance use** development



The study expanded to investigate various aspects of **brain**, **cognitive**, social, emotional, and physical development

Foundings from the Nationnal Institute of Health (NIH)

The Adolescent Brain Cognitive Development



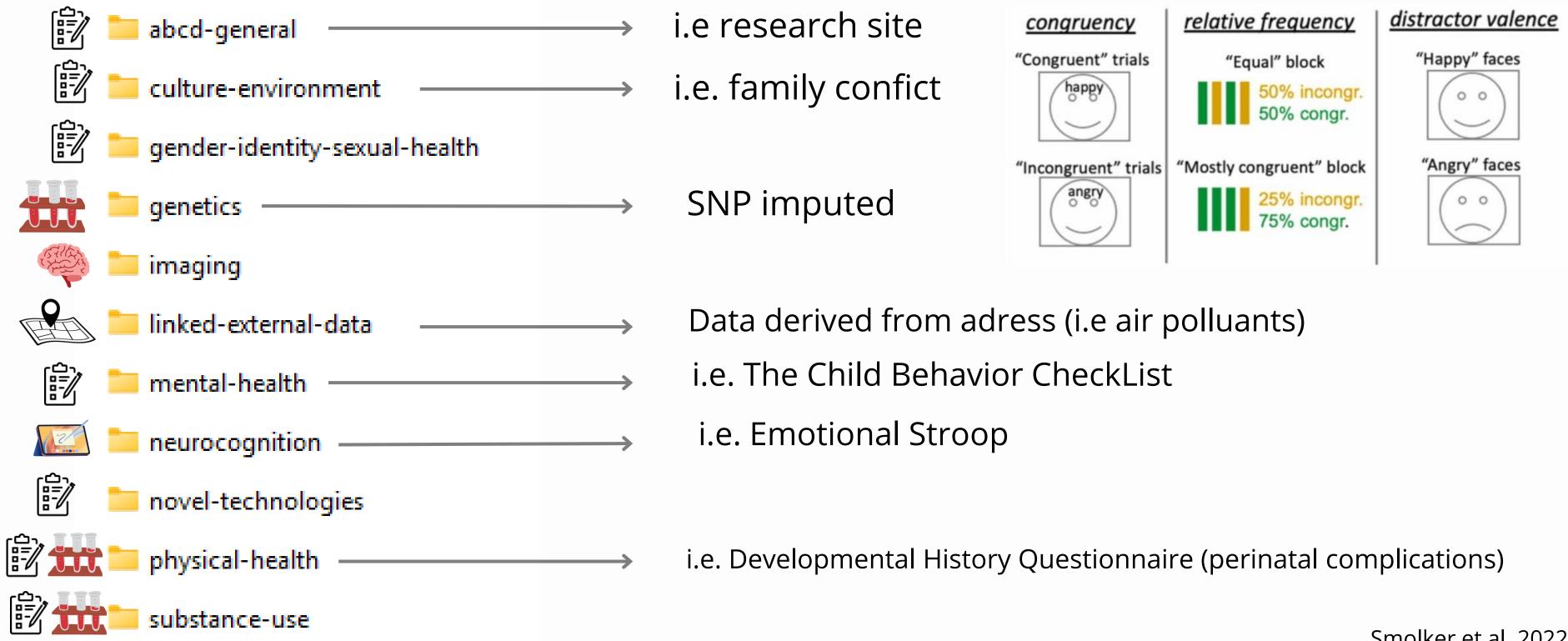
11897 children aged 9 to 11 at baseline

Image from Developmental Cognition and Neuroimaging Lab, University of Minnesota

Multicentric : 21 research sites

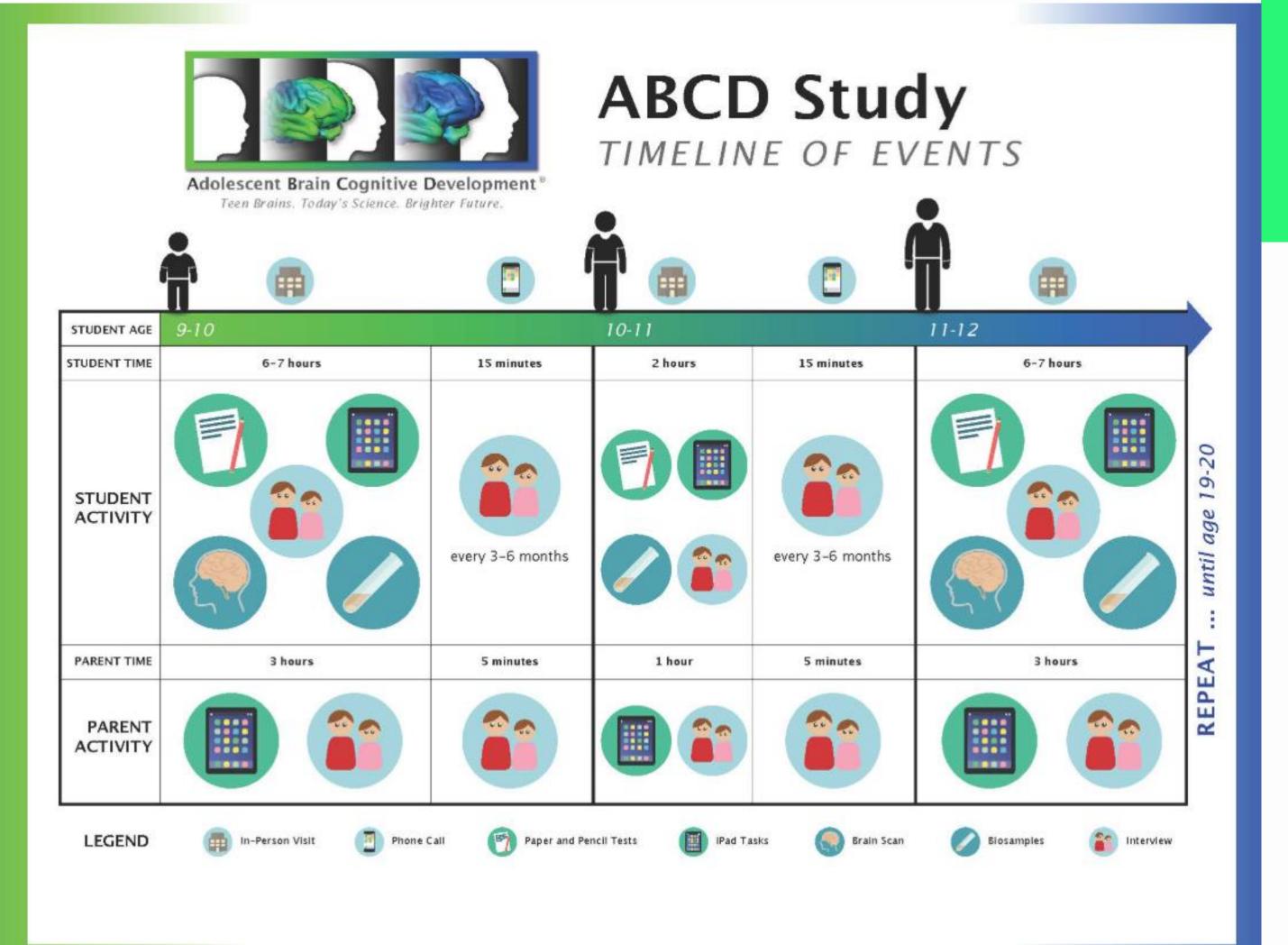
Recruitment and exclusion criteria

- lack of English proficiency in the child
 - the presence of severe sensory, neurological, medical or intellectual limitations that would inhibit the child's ability
 - to comply with the protocol
 - an inability to complete an MRI scan at baseline.



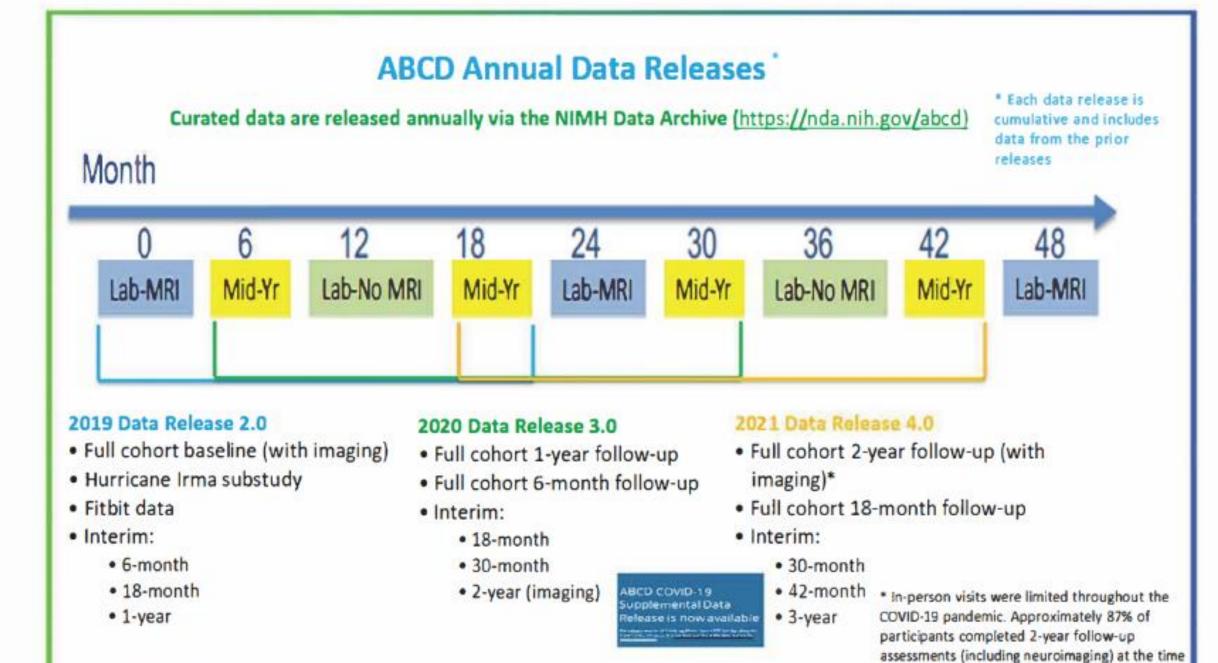
A population-based cohort study, designed to emulate epidemiological research methodologies

A school-based national recruitment strategy with limited exclusion criteria


Data collected

Examples

Smolker et al. 2022



Protocol

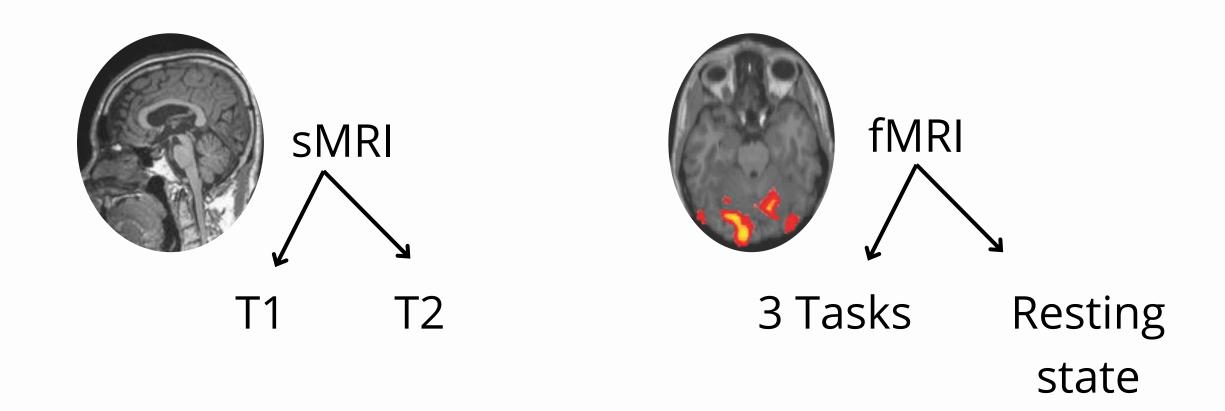
- Baseline : Lab MRI
- 6 month : At home
- 12 months : Lab NO MRI
- 18 months : At home
- 24 months : Lab MRI

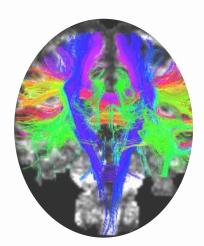
Releases

of the 4.0 data release.

Release 5.1

Release 6.0

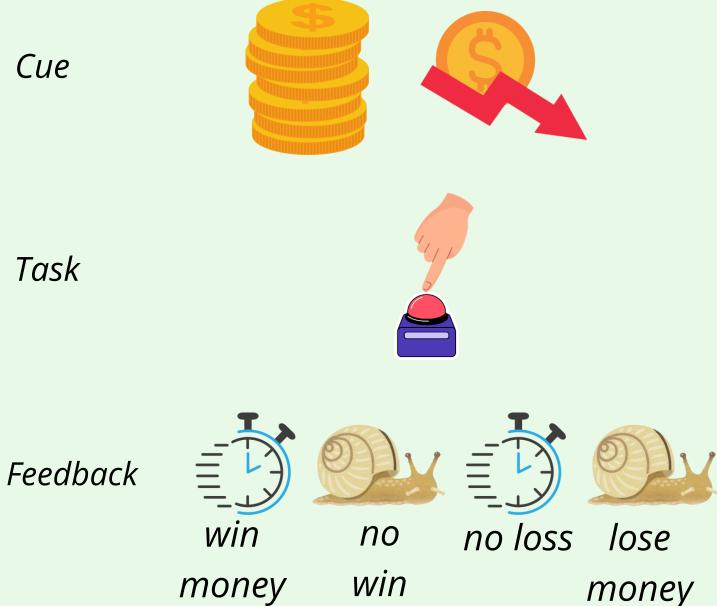

MRI in the ABCD study



Adolescent Brain Cognitive Development[®] Teen Brains. Today's Science. Brighter Future.

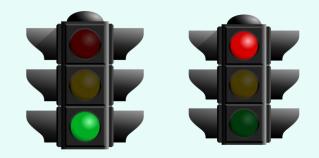
Data collected

Diffusion Imaging


fMRI tasks

Monetary Incentive Delay Task

reward processing, motivation


Cue

Task

The stop signal task impulsivity and impulse control

> *interrupt a motor* response to a "Go" stimulus when it is followed unpredictably by a signal to stop

Emotional N-back task memory and emotion regulation processes

stimuli types

n-back rule

is the face curently presented a match or not a match

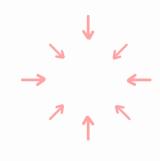
MRI protocols

ABCD NEUROIMAGING PROTOCOL PRESCAN (25-45 minutes) Rescreen for Contraindication for MRI Simulation and motion compliance training Practice fMRI tasks PreScan Questionnaire SINGLE SCAN SESSION TWO SCAN SESSIONS (90-120 minutes) (100-120 minute) SCAN SESSION 1 Localizer, T1, rs-fMRI, DTI, Localizer T2, rs-fMRI T1 -weighted PostScan Questionnaire rs-fMRI BREAK DTI, T2 PreScan Questionnaire rs-fMRI Task-based fMRI SCAN SESSION 2 (MID, SST, EN-Back) Localizer, Task-based fMRI (MID, SST, EN-Back) POSTSCAN (15-20 minutes) PostScan Questionnaire **Recognition Memory** Post-MID survey

The final ABCD protocol

based on a multi-site (12 ABCD sites) pilot study (67 children with a diversity representative of the entire sample)

T1, T2, DTI rs-fMRI (x2) and Tasks based fMRI


Fig. 1. ABCD Neuroimaging Protocol.

MRI and the DAIC

Centralized data management : at the Data Analysis and Informatics Center (DAIC)

- 1) establishing a harmonized magnetic resonance imaging (MRI) **acquisition protocol**, with comparable acquisition parameters across scanner vendors
- 2) quality control of MRI images before and after processing

- ⁴ 3) **centralized image processing** and information extraction
 - 4) **public sharing of data** and image processing pipelines

5) dissemination of imaging-derived measures and tools for use by the consortium and the wider scientific community.

MRI preprocessing NEW

Centralized preprocessing : at the Data Analysis and Informatics Center (DAIC)

How ? lightly modified version of the image processing pipeline from the Human Connectome Project.

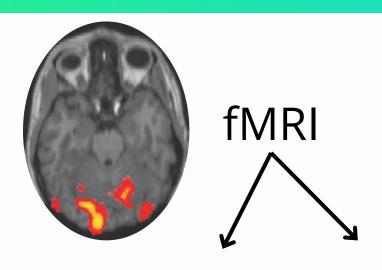
> **Goal :** mitigating the heterogeneities in data preparation often encountered in multi-site consortia

MRIQC NEW

- Visual QC prior to preprocessing : exclude poor quality structural scan
- Quantitative QC for image quality (calculation of metrics such as signal- to-noise ratio (SNR) and head motion statistics)
- Quantitative QC for derived measure using Freesurfer
 7.1.1

Recommandation of inclusion for each MRI datatype based on QC are available !

e v entname $^{\diamond}$	imgincl_t1w_include $\ ^{\diamond}$	imgincl_t2w_include	imgincl_dmri_include	imgincl_rsfmri_include	imgincl_mid_include
baseline_year_1_arm_1	1	1	1	1	1
baseline_year_1_arm_1	1	1	1	0	1
baseline_year_1_arm_1	1	1	0	1	1
baseline_year_1_arm_1	1	1	1	1	1
2_year_follow_up_y_arm_1	1	1	1	1	1
4_year_follow_up_y_arm_1	1	1	1	1	0

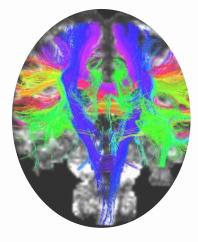


MRI derived measures available as tables (.csv)

 morphometric measures

(Grey matter, white matter, cortcial volume, thickness and area, sulcal depth for both Desikan and Destrieux Atlases)

Task

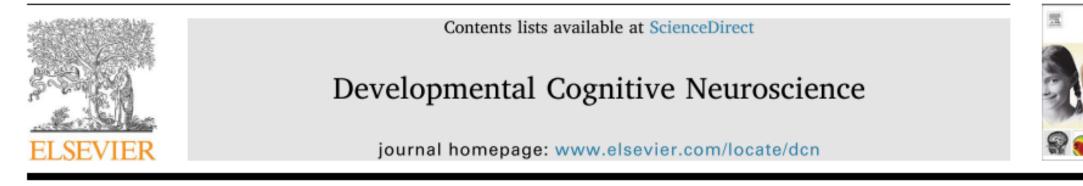

Resting state

Example

- Beta and SEM values Correlations within averaged within ROIs and tabulated **for** each contrast for a given task
- behavioral performance measures

Example

- and between predefined cortical
- networks
- Correlation between each network and each
 - subcortical RO


Diffusion Imaging

- **DTI** (diffusion **Tensor Imaging**) analyses
- **RSI** (Restriction Spectrum Imaging) analyses

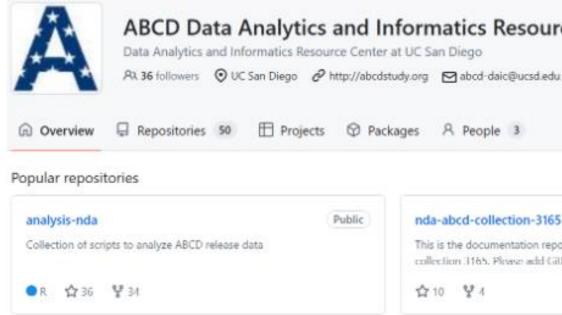
Hagler et al. 2019

Guided use of the database

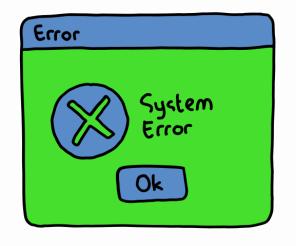
Developmental Cognitive Neuroscience 32 (2018) 43-54

The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites

B.J. Casey^{a,b,*}, Tariq Cannonier^a, May I. Conley^{a,b}, Alexandra O. Cohen^b, Deanna M. Barch^c, Mary M. Heitzeg^f, Mary E. Soules^f, Theresa Teslovich^b, Danielle V. Dellarco^b, Hugh Garavan^g, Catherine A. Orr^g, Tor D. Wager^h, Marie T. Banich^h, Nicole K. Speer^h, Matthew T. Sutherlandⁱ, Michael C. Riedelⁱ, Anthony S. Dickⁱ, James M. Bjork^j, Kathleen M. Thomas^k, Bader Chaarani^g, Margie H. Mejia^l, Donald J. Hagler Jr.¹, M. Daniela Cornejo^l, Chelsea S. Sicat^l, Michael P. Harms^d, Nico U.F. Dosenbach^e, Monica Rosenberg^a, Eric Earl^m, Hauke Bartsch^l, Richard Watts^g, Jonathan R. Polimeniⁿ, Joshua M. Kuperman¹, Damien A. Fair^m, Anders M. Dale^l, the ABCD Imaging Acquisition Workgroup¹


Guidelines and recommandation for variable selection dealing with outliers

analysis


Casey et al. 2018 Hagler et al. 2019

Guided use of the database

Recommendations, tutorials, shared code scripts

Not available recently

Interactive Data Dictionnary Explorer (release 5.1)

Interactive Plateform for data analysis (Realease 4.0)

ABCD Data Analytics and Informatics Resource Center

		People
blic	nda-abcd-collection-3165 Public	001
	This is the documentation repository for ongoing releases to the NDA collection 3165. Please add GitHub Issues here for requests or feedback.	
	合10 学1	Top languages

Casey et al. 2018 Hagler et al. 2019

The ABCD study is an amazing opportunity for MRI research

Multi-modal MRI data with harmonized acquisition, preprocessing and quality control

Large populationbased cohort of developping teenagers

Open source tools and guidelines

Casey et al. 2018 Hagler et al. 2019

Supplementary

Adolescent Brain Cognitive Development® Teen Brains. Today's Science. Brighter Future.

MRI protocols

Neuroimaging Parameters

Siemens	Matrix	Slices	FOV	% FOV phase	Resolution (mm)	TR (ms)	TE (ms)	TI (ms)	Flip Angle (deg)	Parallel Imaging	MultiBand Acceleration	Phase partial Fourier	Diffusion Directions	b-values	Acquisition Time
T1	256 x 256	176	256 x 256	100%	1.0 x 1.0 x 1.0	2500	2.88	1060	8	2x	Off	Off	N/A	N/A	7:12
T2	256 x 256	176	256 x 256	100%	1.0 x 1.0 x 1.0	3200	565	N/A	Variable	2x	Off	Off	N/A	N/A	6:35
														500 (6-dirs)	
														1000 (15-dirs)	
														2000 (15-dirs)	
Diffusion	140 x 140	81	240 x 240	100%	1.7 x 1.7 x 1.7	4100	88	N/A	90	Off	3	6/8	96	3000 (60-dirs)	7:31
fMRI	90 x 90	60	216 x 216	100%	2.4 x 2.4 x 2.4	800	30	N/A	52	Off	6	Off	N/A	N/A	
									Flip						
Philips	Matrix	Slices	FOV	% FOV phase	Resolution (mm)	TR (ms)	TE (ms)	TI (ms)	Angle (deg)	Parallel Imaging	MultiBand Acceleration	Half Scan Factor	Diffusion Directions	b-values	Acquisition Time
T1	256 x 256	225	256 x 240	93.75%	1.0 x 1.0 x 1.0	6.31	2.9	1060	8	1.5 x 2.2	Off	N/A	N/A	N/A	5:38
T2	256 x 256	256	256 x 256	100%	1.0 x 1.0 x 1.0	2500	251.6	N/A	90	1.5 x 2.0	Off	N/A	N/A	N/A	2:53
														500 (6-dirs)	
														1000 (15-dirs)	
														2000 (15-dirs)	
Diffusion	140 x 140	81	240 x 240	100%	1.7 x 1.7 x 1.7	5300	89	N/A	78	Off	3	0.6	96	3000 (60-dirs)	9:14
fMRI	90 x 90	60	216 x 216	100%	2.4 x 2.4 x 2.4	800	30	N/A	52	Off	6	0.9	N/A	N/A	
									Flip			Phase			
GE	Matrix	Slices	FOV	% FOV phase	Resolution (mm)	TR (ms)	TE (ms)	TI (ms)	Angle (deg)	Parallel Imaging	MultiBand Acceleration	partial Fourier	Diffusion Directions	b-values	Acquisition Time
T1	256 x 256	208	256 x 256	100%	1.0 x 1.0 x 1.0	2500	2	1060	8	2x	Off	Off	N/A	N/A	6:09
T2	256 x 256	208	256 x 256	100%	1.0 x 1.0 x 1.0	3200	60	N/A	Variable	2x	Off	Off	N/A	N/A	5:50
														500 (6-dirs)	
														1000 (15-dirs)	
														2000 (15-dirs)	
Diffusion	140 x 140	81	240 x 240	100%	1.7 x 1.7 x 1.7	4100	81.9	N/A	77	Off	3	5.5/8	96	3000 (60-dirs)	7:30
fMRI	90 x 90	60	216 x 216	100%	2.4 x 2.4 x 2.4	800	30	N/A	52	Off	6	Off	N/A	N/A	

Adolescent Brain Cognitive Development®

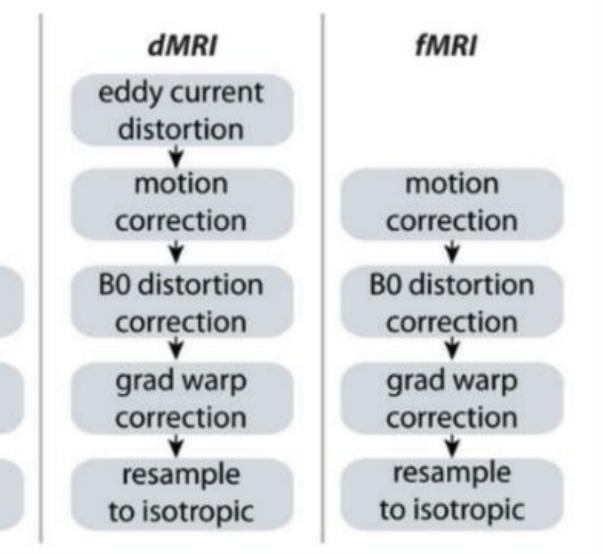
Teen Brains. Today's Science. Brighter Future.

ABCDStudy.org

3 types of scanner :

- Siemens Prisma
 - Phillips
- General Electrics 750

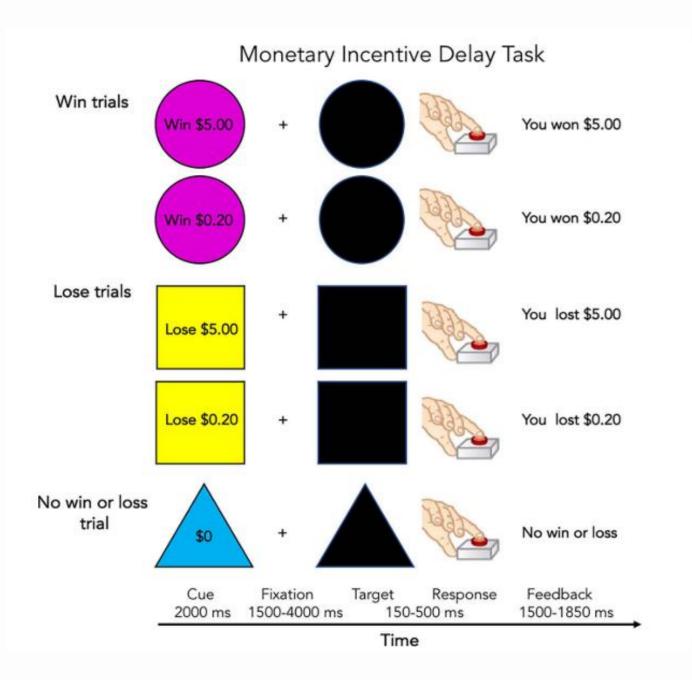
Harmonized MRI acquisition protocol

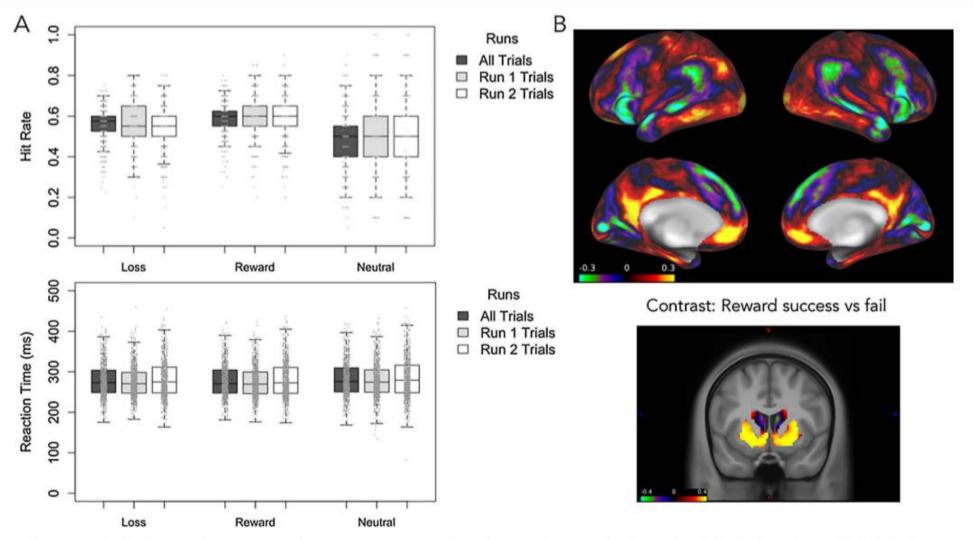

(i.e. standard adult-size coil to ensure stability of the hardware over the course of *the study)*

MRI preprocessing NEW

5 general steps	Modality			
 unpacking and conversion create standardized series directories with links to DICOM files, ordered by InstanceNumber classify series types using metadata 	for bias r			
 check for protocol compliance and completeness convert DICOMs into compressed volume files 	sMRI			
brain segmentation whole-brain segmentation cortical surface reconstruction white matter tract segmentation				
*	grad warp			
sMRI morphometry	correction			
dMRI modeling (DTI/RSI) rs-fMRI correlation analysis task-fMRI event-related analysis volume and surface ROI averaging	bias field correction			
* summary	resample to			
 compilation of ROI average values across measures compilation of results across subjects 	isotropic			

y-specific processing steps s field, distortion, and/or motion correction

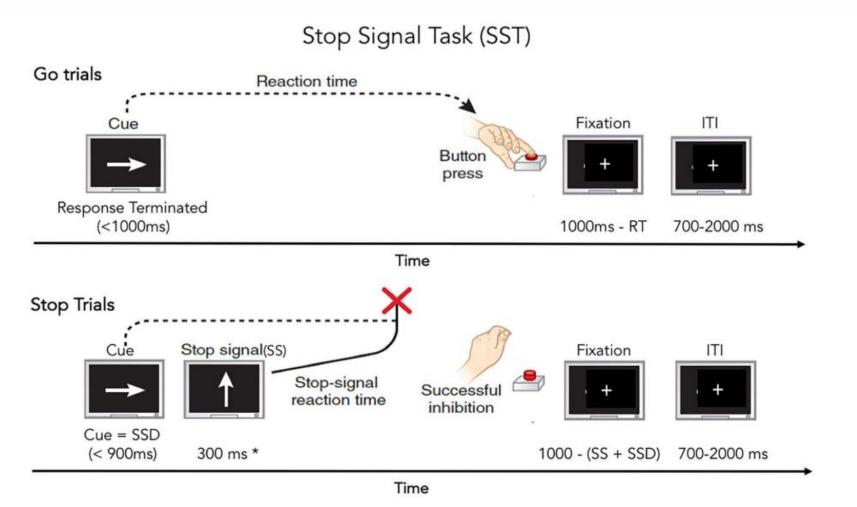


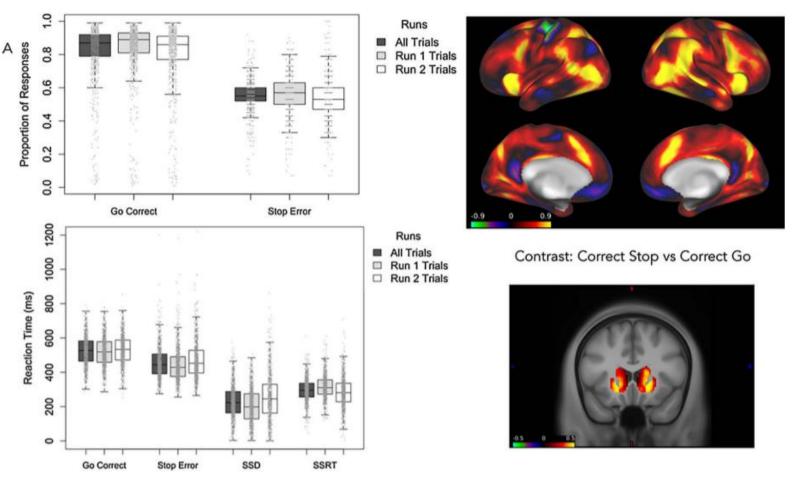

Hagler et al. 2019

Choice of fMRI taks

- validity (implication in addiction)
- developmentally appropriate (feasibility in development studies)
- specificity (well-characterized neural activations)
- reliability (reliable activation over time within subjects
- sensitivity (consistent patterns accross subjects
- generalizibility (leveraging of other complementary devel-
- opmental imaging initiatives that use similar measures)

Monetary Incentive Delay Task

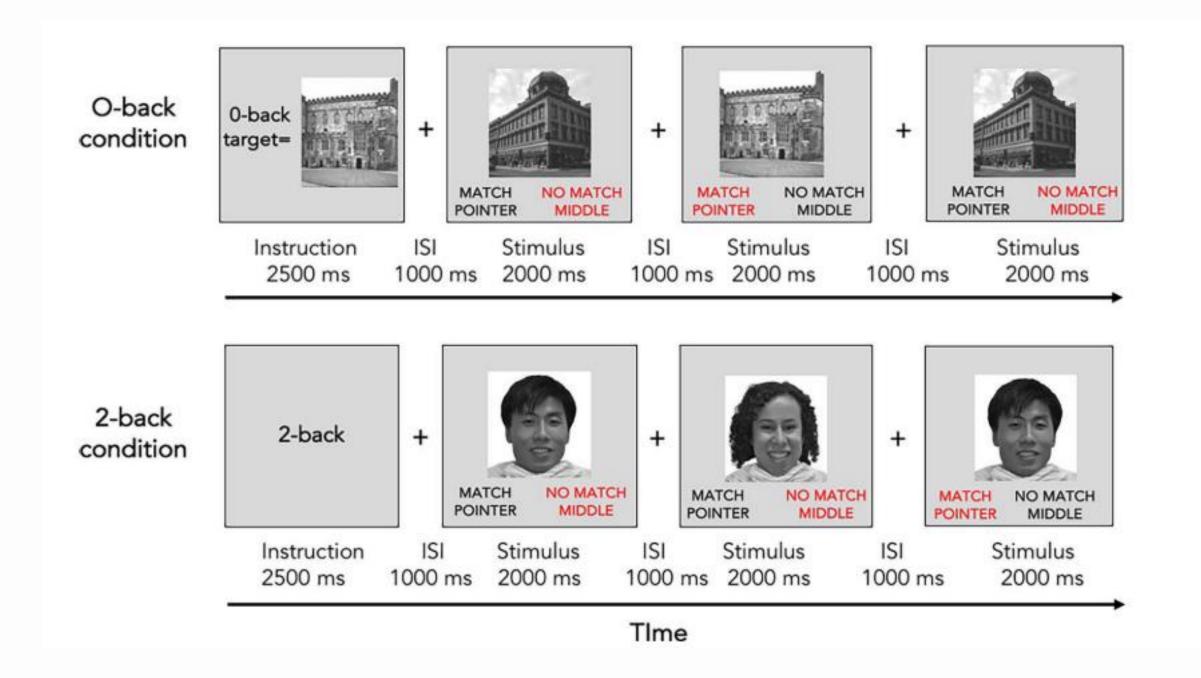




prefrontal cortex (top) and the ventral striatum (bottom).

Fig. 4. Preliminary results for the MID task. A. Hit rate and reaction time are presented as a function of loss, reward and neutral trials for the first and second half of the data (Run 1 and Run 2). B. Cortical (top) and subcortical (bottom) maps for the contrast of reward success vs fail (signed Cohen's d) show reliable activation of expected brain circuitry in medial

Stop Signal Task



* If the SSD > 700 ms then the SS duration = 1000-SSD.

Fig. 6. Preliminary Results for the SST. A. Accuracy and reaction times are presented as function go and stop trials. B. Cortical patterns of brain activity (signed Cohen's d) for the contrast of correct stop vs correct go trials (top) and subcortical activity in the putamen for correct stop trials vs error stop trials. SSRT: stop signal reaction time; SSD: stop signal delay.

Emotional N-back Task

Emotional N-back Task

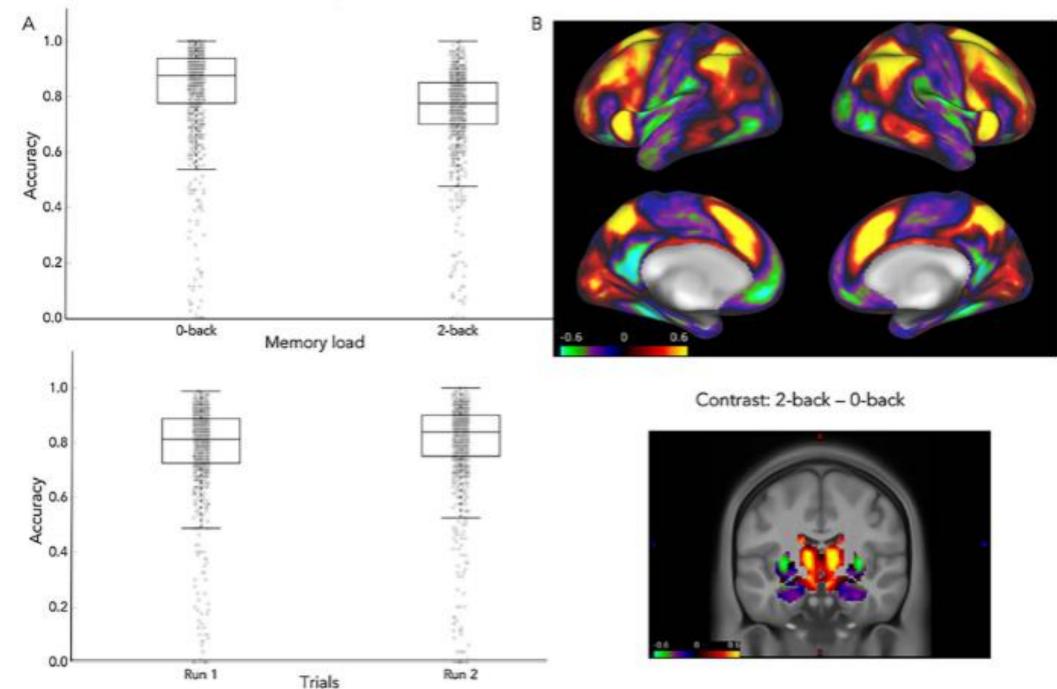


Fig. 8. Preliminary results for the Emotional n-back task. A. Behavioral results. Boxplots provide the median, first and third quartiles for accuracy on the 0-back and 2-back conditions and for each experimental run of the task. B. fMRI results. Cortical (top) and subcortical (bottom) functional maps (signed Cohen's d) for the contrast 2-back vs 0-back.

Experience Feedback

Adolescent Brain Cognitive Development[®] Teen Brains. Today's Science. Brighter Future.

Difficullty in Data Access

No existing procedures at AMU

WE DID IT FROM SCRATCH

With Direction de la recherche et valorisation

Create eRA Commons Account to access NDA (NIH Data Archive)

IT TOOK 8 MONTHS

Adolescent Brain Cognitive Development Teen Brains. Today's Science. Brighter Future.

The adventure

Local Ethical Committee

Registration of our Institutional Review Board (IRB)

Get a Federalwide Assurance (FWA)

Difficullty in Data Access

No existing procedures at AMU

WE DID IT FROM SCRATCH

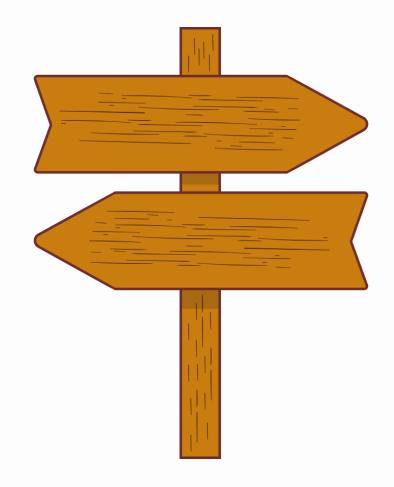
With Direction de la recherche et valorisation

- Request access : Fill the Data Use Certification
 - Get Data Protection Officer (DPO) approuval

IT TOOK 8 MONTHS

Adolescent Brain Cognitive Development Teen Brains. Today's Science. Brighter Future.

The adventure


- Get the approval and signature of the President of the University
 - Get access to the database on NDA

Data Storage

Locally

Local computer of the Institute Local server of the Institute

Protected Data Center from our Unviersity

