Data Sharing and processing infrastructures :

A Brain Imaging journey

Jean-Baptiste Poline Jean-baptiste.poline@mcgill.ca

ORIGAMI lab MNI, Brain Imaging Centre, McGill, Montreal

But why on earth do I work on infrastructures ?

Jean-Baptiste Poline Jean-baptiste.poline@mcgill.ca

ORIGAMI lab MNI, Brain Imaging Centre, McGill, Montreal

Slowed canonical progress in large fields of science

Johan S. G. Chu^{a,1}^[] and James A. Evans^{b,c,d}^[]

PNAS 2021

Examining 1.8 billion citations among 90 million papers across 241 subjects, we find a deluge of papers does not lead to turnover of central ideas in a field, but rather to ossification of canon.

THE LANCET

COMMENT | VOLUME 385, ISSUE 9976, P1380, APRIL 11, 2015

Offline: What is medicine's 5 sigma?

Richard Horton 🖂

Published: April 11, 2015 DOI: https://doi.org/10.1016/S0140-6736(15)60696-1

Most common causes :

- Small sample size
- Analytical flexibility
- p-hacking
- Poor statistical training

Many non reproducible papers

NIH plans to enhance reproducibility

Francis S. Collins and **Lawrence A. Tabak** discuss initiatives that the US National Institutes of Health is exploring to restore the self-correcting nature of preclinical research.

Statistical procedures

Open access / open science

. . .

Many non reproducible papers : PD and MRI

Table 1: Reproduction and replication results (fractions of papers)

	Reproductions	s Replications
	(n=3)	(n=8)
Cohort Filtering		
C1 – Some cohort variable(s) not in PPMI	0.00	0.67
C2 – Groups missing subjects	0.33	0.27
C3 – Groups with demographic differences	0.42	0.44
C4 – Groups with clinical differences	0.50	0.39
Image Analysis Pipeline		
I1 – Main pipeline components available	0.67	0.83
I2 – Integrated pipeline available	0.67	0.00
I3 – Pipeline reproduced with high confidence	0.00	0.83
I4 - QC reproduced with high confidence	0.00	0.33
Statistical or ML Analysis Pipeline		
A1 – Original pipeline available	0.33	0.17
A2 – Pipeline reproduced with high confidence	1.00	0.67
Statistical Analyses		
S1 – Original paper reported statistical analyses	0.33	1.00
S2 – Analyses where significance was replicated	1.00	0.48
Machine Learning Models		
M1 – Original paper reported ML model(s)	1.00	0.00
M2 – Original ML metrics above chance-level	1.00	n/a
Fraction of obtained ML metrics:		,
M3.1 – Comparable to or above original	0.29	n/a
M3.2 – Lower than original, above chance	0.38	n/a
M3.3 – At chance level	0.33	n/a
M4 – Original ML pipeline raised concerns	0.67	n/a

Part I: Reproducibility: background

Part II: Gap analysis

Part III: NeuroInformatics platforms

Part IV: Conclusion

Part I: Reproducibility: background

Part II: Gap analysis

Part III: NeuroInformatics platforms

Part IV: Conclusion

Amgen replication

- 53 papers examined at Amgen in preclinical cancer research
- Papers were selected that described something completely new and in very high impact factor journals
- Scientific findings were confirmed in only 6 (11%)

Begley and Ellis, Nature, 2012

JAMA Psychiatry 2017

Altered Brain Activity in Unipolar Depression Revisited Meta analyses of Neuroimaging Studies

Veronika I. Müller, PhD, Edna C. Cieslik, PhD, Ilinca Serbanescu, MSc, Angela R. Laird, PhD, Peter T. Fox, MD, and **RESULTS**—In total, 57 studies with 99 individual neuroimaging experiments comprising in total 1058 patients were included; 34 of them tested cognitive and 65 emotional processing. Overall analyses across cognitive processing experiments (P > .29) and across emotional processing experiments (P > .47) revealed no significant results. Similarly, no convergence was found in analyses investigating positive (all P > .15), negative (all P > .76), or memory (all P > .48) processes. Analyses that restricted inclusion of confounds (eg, medication, comorbidity, age) did not change the results.

Followed the Genomic reproducibility crisis (GWAS) ?

Forensic Analysis

- Potti et al., Nat. Med. 2006, 2008 vs Baggerly and Coombes, "Forensic analysis", Annals of applied Stat., 2009
- Choose cell lines that are most sensitive / resistant to a drug, use expression profiles to build a model that predicts patient response

Baggerly and Coombes Forensic:

"with poor documentation and irreproducibility even well meaning investigator may argue for drug that are contraindicated to some patients"

"the most common errors are simple (e.g.,row or column offsets); conversely, the most simple errors are common."

In the general public

Essay

Why Most Published Research Findings Are False

2005. PLoS Medicine, 2(8), e124. doi: 10.1371/journal.pmed.0020124

"There is increasing concern about the reliability of biomedical research, with recent articles suggesting that up to 85% of research funding is wasted."

Bustin, S. A. (2015). The reproducibility of biomedical research: Sleepers awake! *Biomolecular Detection and Quantification*

THE LANCET

Research: increasing value, reducing waste

No Cure

When Bayer tried to replicate results of 67 studies published in academic journals, nearly two-thirds failed.

NATURE | NEWS

First results from psychology's largest reproducibility test

Our love of "significance" pollutes the literature with many a statistical fairytale. We reject important confirmations. In their quest for telling a compelling story, scientists too often sculpt data to fit their preferred theory of the world.

Funding agencies reaction

NIH plans to enhance reproducibility

Francis S. Collins and Lawrence A. Tabak discuss initiatives that the US National Institutes of Health is exploring to restore the self-correcting nature of preclinical research.

Collins and Tabak. 2014. Nature 505: 612–13.

Know How To Address Rigor and Reproducibility in Your Next Application

Funding News Edition: June 17, 2020

Credit: UK software institute

Think **generalizability** across Data, Software, Time, Scanner, Stimuli, etc

Think **generalizability** across Data, Software, Time, Population, Scanners, etc

Part I: Reproducibility: background

Part II: Gap analysis

Part III: NeuroInformatics platforms

Part IV: Conclusion

J. Carp, f. Neuroscience, 2012

- A **single** event-related fMRI experiment to a large number of unique analysis procedures
- Ten analysis steps for which multiple strategies appear in the literature : **6,912 pipelines**
- Plotting the maximum peak

- •70 independent teams analyzing <u>the same</u> fMRI dataset
- •No team had the same pipeline
- •Results show three "clusters"
- •Even within clusters decision to reject H0 varies

Botvinik-Nezer, 2020

Botvinik-Nezer, 2020

Kurt G. Schilling, ... M. Descotaux, bioRxiv, 2020

- Open data with ABIDE
- Measuring brain region connectivity with different segmentation pipelines
- Poor correlation between pipelines and very different networks found

Nikhil Baghwat, Gigascience 2020

Dataset shift issues

Jerome Dockès, Gigascience 2021

- UK Biobank: N=500,000
- Machine Learning with simple or complex learners
- Change in population demographics and usual corrections methods can lead to significant loss in accuracy

Sample size: One problem

Molendijk, 2012: BDNF and hippocampal volume See also : Mier, 2009: COMT and DLPFC

Sample size: One problem

The distribution of more than one million z-values from Medline (1976–2019)

Zwet, E.W. van, Cator, E.A., n.d. The significance filter, the winner's curse and the need to shrink. Statistica Neerlandica n/a. https://doi.org/10.1111/stan.12241

Part I: Reproducibility: background

Part II: Gap analysis

Part III: NeuroInformatics platforms

Part IV: Conclusion

Principles for the next generation: FAIR – and open infrastructures

- <u>Implementation</u> : good software dev practice + versatile and modular ecosystem
- Sustainability : transparent funding mechanism, distributed development
- Distributed governance (e.g BIDS governance)
- Building communities and standards:
 - GH4GH, INCF, W3C, BIDS++, etc

PMC website

Proposed workflow and ecosystem

Neuroscience

🍪 eLife

Mining the neuroimaging literature

Jérôme Dockès, Kendra Oudyk, Mohammad Torabi, Alejandro I de la Vega, Jean-Baptiste Poline 🎴

National Institute for Research in Digital Science and Technology (INRIA), Paris, France • Montreal Neurolog Institute, McGill University, Montreal, Canada • University of Texas at Austin, Austin, Texas, USA

https://doi.org/10.7554/eLife.94909.1

PMC website

Build query "Music[Title] AND (fMRI[Abstract] OR functional magnetic resonance imaging[Abstract])"

pubget

Format URL

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=PMC&term=Music[Abstract]+AND+(fMRI[Abstract] +OR+functional+magnetic+resonance+imaging[Abstract])&usehistory=y

Retrieve journal articles as nested XML

pubget

Format URL

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=PMC&term=Music[Abstract]+AND+(fMRI[Abstract] +OR+functional+magnetic+resonance+imaging[Abstract])&usehistory=y

Retrieve journal articles as nested XML

Magnetic resons Up to a pretest probabil, None of the authors

1 ["text": "P\u0119kala, Przemvs\u0142aw A, and \u0141azarz, Dominik P. and Rosa, Mateusz A. and P\u0119kala, Jakub R. and Baginski, Adam and

Gobbi, Alberto and Wojciechowski, Wadim and Tomaszewski, Krzysztof A. and LaPrade, Robert F.\nOrthop J Sports Med. 2021\n\n# Title\n\nClinical Anatomy of the Posterior Meniscofemoral Ligament of Wrisberg: An Original MRI Study, Meta-analysis, and Systematic

labelbuddy

Annotate texts labelbuddy - review-neuro-meta-analyses.lb File Preferences Help Annotate Labels & Documents Import & Export 「タ g く 679/1090 > 点 の

Example: Replicating and extending Poldrack et al. (2017)

Alyssa Dai

Nikhil Bhagwat

Remi Gau

Arman Jahanpour

JB Poline

Sebastian Urchs

Michelle Wang

<u>Neurobagel</u> © 2024 by <u>Neurobagel Team, Origami Lab, McGill</u> slides are licensed under <u>CC BY 4.0</u>

💥 neur

HEALTHY BRAINS

HEALTHY LIVES

ondation

Brain Canada

NIBI

Neurobagel and NiPoppy

Data processing harmonization and discovery

CONP

Adopt a lightweight neuroinformatics framework for multi-centric clinical research consortia What: Streamline and simplify existing solutions

Adopt a lightweight neuroinformatics framework Ξ Ξ for multi-centric clinical research consortia

<u>What</u>: **Streamline and simplify** existing solutions <u>How</u>: Focus on concrete **use cases** and usability

. . .

Adopt a lightweight neuroinformatics framework Ξ Ξ for multi-centric clinical research consortia

. . .

<u>What</u>: **Streamline and simplify** existing solutions <u>How</u>: Focus on concrete **use cases** and usability

individual site

. . .

Nipoppy

Adopt a lightweight neuroinformatics framework for multi-centric clinical research consortia <u>What</u>: **Streamline and simplify** existing solutions How: Focus on concrete **use cases** and usability **Neurobagel** Nipoppy

individual site

Nipoppy: protocol for the individual dataset

end to end framework for processing of single dataset

Common participant level data model

Common participant level data model

The global language of healthcare

Distribute model as graphical annotation tool (that makes / augments BIDS data dictionaries)

.TSV

JSON

Use existing controlled vocabularies

imaging metadata

observational metadata

gender group age 2: Harmonization 1: Integration 44 f depr no treatment 21 f depr cbt 28 m depr no treatment BIDS **Imaging Modality** years (int, float) "019Y" Age BIDS vocab term Gender "M" (string) "Parkinson's SNOMED-CT (URI) **SNOMED** International Diagnosis "PD" **Montreal Cognitive** cognitiveAtlas (URI) "MCTOT" Assessment tools gathering the metadata local **metadata** what do your metadata mean

(where)

.....

Limited and specified terms for <u>query</u>


```
"age": {
  "Description": "age of the participant",
  "Units": "years",
  "Annotations": {
    "IsAbout": {
      "TermURL": "http://purl.obolibrary.org/obo/NCIT_C25150",
      "Label": "Age"
    3,
    "Unit": {
      "TermURL": "xsd:integer",
      "Label": "Integer"
ξ,
"sex": {
  "Description": "sex of the participant as reported by the participant",
  "Levels": {
   "M": "male",
    "F": "female"
  "Annotations": {
    "IsAbout": {
      "TermURL": "http://purl.obolibrary.org/obo/NCIT_C28421",
      "Label": "Sex"
    },
    "Levels": }
      "M": -{
        "TermURL": "http://purl.obolibrary.org/obo/NCIT_C20197",
       "Label": "Male"
      3,
      "F": {
       "TermURL": "http://purl.obolibrary.org/obo/NCIT_C16576",
        "Label": "Female"
    "MissingValues": [
      0.0
```

controlled terms

semantic data dictionary

Connect harmonized dataset representations via knowledge graph stores

query.neurobagel.org

Query fields	Results	
Neurobagel Graph	Select all d	atacate
OpenNeuro ×		
Parkinson's Progression Markers	•	
Quebec Parkinson Network 🗙		PD De Novo: Resting State fMRI and Physiological Signals 14 subjects / 28 total subjects
Phenotypic fields (at baseline)		
Min Age Max Age		
		DDM
Sex		PPIVII
All		1491 subjects / 3060 total subjects
Diagnosis Healthy control		
Parkinson's disease X N		Ouebec Parkinson Network
Minimum number of sessions		140 subjects / 265 total subjects
Assessment tool		
All	/	
Imaging fields		

One <u>tunable</u> neurobagel node for each data owner

Federated dataset search, local data access/visibility control

- Extendable model for harmonizing dataset variables
- Cross-dataset, cross-site data findability at the subject level
- Decentralized data storage & governance

How do I get my data into a Neurobagel node

Ongoing work

• Authentication / Authorization

• Search for preprocessed data / derivatives

• Expand what phenotypic variables can be annotated / searched

• Ease of use, helper features

Computer assisted data annotation

Google Summer of Code

An LLM-assisted service for annotating research data with machine-understandable, semantic data dictionaries

Neurobagel builds tools to provide a way for researchers and other data users to define and find cohorts of individuals across a federated ecosystem of data nodes. These tools are developed with the

Federated identity + local control

Global Alliance for Genomics & Health

Interoperability with Beacon

Beacon Network

Search all beacons for allele

GRCh37 - 3 : 100000 A > C

Neurobagel and the community

Take home messages

- Build standards and communities of practices
- Be sustainable: cheap, >3 lab bus factor, can scale, can update
- Distributed governance for distributed infrastructures / ecosystems
- Love, Fame, Money, and Rules

An ecosystem for distributed dataset harmonization and search.

Neurobagel allows you to connect a local neuroimaging dataset with others in a decentralized framework using linked data principles.

Thank you

https://neurobagel.org