How do we learn that $2+3=5$?
 Behavioral and neural evidence for procedural automatization of arithmetic during development

Jéròme Prado
Centre de Recherche en Neurosciences de Lyon CNRS, INSERM, \& Université de Lyon France

INT, Marseille - July 62023

Automaticity in the mind

How does a task become automatic?

"automaticity is memory-based processing and automatization is a shift from algorithmic processing [...] to memory retrieval"

Logan (1997)

- A novel task initially requires effortful mental computation
- Each instance of encountering the task creates a memory trace or strengthens the connection between stimulus and response
- Automatic tasks rely on retrieving associations from memory

Objects or thoughts that are experienced concomitantly become progressively associated in memory

Mental arithmetic as a case study of automatization

- Solving simple arithmetic problems repeatedly should lead to an association between operands and answer
- This association may be verbal in nature
- Solving simple arithmetic problems should not involve access to number magnitude in expert individuals

Dehaene and Cohen (1995) Mathematical cognition Geary \& Hoard (2005) Handbook of mathematical cognition

Are arithmetic facts retrieved from verbal memory?

$$
\mathrm{n}=26 \text { adults } \quad \mathrm{n}=34 \text { children }
$$

Quantity mechanisms

Verbal mechanisms

Prado, Mutreja, \& Booth (2014) Dev. Science Prado, Mutreja, Zhang, Mehta, Desroches, Minas, \& Booth (2011) HBM

Are arithmetic facts retrieved from verbal memory?

5 -year-olds ($\mathrm{n}=43$)
L. IPS

8 -year-olds ($\mathrm{n}=46$)
L. IPS
R. IPS

Correlation with arithmetic skills

$$
8 \text {-year-olds (n=50) }
$$

Adults ($\mathrm{n}=48$)

L.

Bhatia, Longo, Chesonokova, \& Prado (2022) Cereb. Cortex Girard, Bastelica, Léone, Epinat-Duclos, Longo, \& Prado (2022) Psych. Science Nakai, Girard, Longo, Chesnokova, \& Prado (2023) PLOS Biol.

Are arithmetic facts retrieved from verbal memory?

- Simple arithmetic facts engage parietal mechanisms supporting numerical magnitude
- Single-digit multiplication may be an exception, as it is associated with language
 mechanisms
- This is likely to be due to teaching strategies emphasizing the explicit learning of multiplication facts

\square Small

Chinese > American

$\mathrm{n}=26$ adults in US
$\mathrm{n}=27$ adults in China

Dissecting arithmetic facts

Operator processing

$$
10-12 \text {-yo }(n=33)
$$

$13-15$-yo $(\mathrm{n}=28)$

Fayol \& Thevenot (2012) Cognition

Operator processing

Sign-only trials

$\mathrm{n}=27$ adults

R. Mathieu
$\mathrm{n}=34$ children

Spatial attention task
Mathieu, Epinat-Duclos, Léone, Fayol, Thevenot, \& Prado (2018) Dev. Cog. Neuro. Mathieu, Epinat-Duclos, Sigovan, Breton, Cheylus, Fayol, Thevenot and Prado (2018) Cereb. Cortex

Numbers in space

- There is evidence of explicit and implicit associations between numbers and space (i.e., the mental number line)
- Adding and subtracting may involve navigating along the mental number line

Galton (1881)

Dehaene, Bossini, \& Giraux (1993) JEP: Gen.

Operator processing

A. Díaz-Barriga Yãñez

Adults
Children $(\mathrm{n}=101)$

Mathieu, Gourjon, Couderc, Thevenot, \& Prado (2018) Cognition
Díaz-Barriga Yáñez, ..., Thevenot and Prado (2020) Ann. N. Y. Acad. Sci

Arithmetic and space

Addition

Prado \& Knops (in revision)

Dissecting arithmetic facts

The problem-size effect

Poletti, Díaz-Barriga Yáñez, Prado, \& Thevenot (2023) J. Exp. Child Psych.
Uittenhove, Thevenot, \& Barrouillet (2016) Cognition

The 'magical' number 4

What is Magic About the Magical Number Four?

Dietrich Simons and Dietrich Langheinrich

The magic number 4 ± 0 : A new look at visual numerosity judgements

Janetse Atkinsen, Fergus W Campbell, Marcus R Francis

Atkinson, Campbell, \& Francis (1976) Perception

An automatized counting model

1. Brain regions in which activity is associated with the problem-size effect in children should still contribute to the problem-size effect in adults
2. BUT this should be limited to problems with operands ≤ 4

Neural development of the problem-size effect

- $\mathrm{n}=128$ participants

- 8-9-yo (n=31)
- 11-12-yo (n=31)
- 14-15-yo (n=26)
A. Díaz-Barriga Yáñez

Vocal production (out-of-scanner)

Silent production (in-scanner)

Neural development of the problem-size effect

Vocal (out-of-scanner) vs. Silent (in-scanner) task

Neural development of the problem-size effect

Participants younger than $10(\mathrm{n}=31)$

Díaz-Barriga Yáñez, Longo, Chesnokova, Poletti, Thevenot, \& Prado (in revision)

Neural development of the problem-size effect

Díaz-Barriga Yáñez, Longo, Chesnokova, Poletti, Thevenot, \& Prado (in revision)

Neural development of the problem-size effect

- The problem-size effect decreases over the course of learning, but remains significant even in expert adults and even in very small problems
- Neuroimaging evidence suggests that qualitatively similar neural mechanisms support the problem-size effect in children and adults, though this is limited to problems with operands ≤ 4

- This is consistent with the idea that a counting procedure may be automatized over the course of development
- This procedure may involve a tagging of numbers along a mental number line, leading to an association with space

Theoretical Implications

- Memory may be largely associative, but that does not mean that learning to solve frequently encountered problems will necessarily rely on building associations in children
- Learning also involves overly practicing procedures, which may increase in efficiency and become automatic and unconscious in adults
- Self reports cannot distinguish between automatized procedures and associations
- Automatized procedures and associations may compete in a "horse race"
- This has implications for other academic domains

Farrington-Flint Coyne, Stiller \& Heath (2008) Educ. Psych.

Clinical implications

- Math learning disability (MLD) affects 5-6\% of children worldwide
- A hallmark of MLD is a persistent inability to fluently process arithmetic facts
- This inability is often interpreted as a retrieval deficit due to working memory limitations
- However, MLD might also involve inefficient automatization of procedures
- This is consistent with the procedural deficit hypothesis of learning disabilities

Geary et al. (2012) J. Learn. Disabil. Evans \& Ullman (2016) Frontiers in Psych.

Thevenot, Uittenhove, \& Prado (2017) Développements

Educational implications

- There is no doubt that building fluency with arithmetic facts is important
- However, arithmetic facts do not necessarily need to be learned by rote, which comes at a cost of interferences
- Practicing a procedure may be as effective as rote learning, to the extent that its application is straightforward and it is sufficiently practiced
- Multiplication tables make sense, addition tables much less

Thanks

The BBL team

All children and parents who participated!

