

Are Deep Neural Network latent spaces a good model for human brain representations?

Leila Reddy Rufin VanRullen

COMMUNICATIONS

BIOLOGY

Reconstructing faces from fMRI patterns using deep generative neural networks

OPEN

CerCo UMR5549

Rufin VanRullen¹ & Leila Reddy¹

https://doi.org/10.1038/s42003-019-0438-y

ARTICLE

Deep Neural Networks

- Convolutional Neural Networks (supervised networks)
 - AlexNet, VGG, GoogLeNet, ResNet
 - Excellent performance on object recognition and classification
- Unsupervised learning (e.g., Generative Adversarial Networks)
 - Latent spaces have intuitive properties.
 - What is a latent space? ~ Internal representation of a network.

Outline

- Properties of Latent spaces : intuitively, they seem to make sense.
 - Natural Language Processing (NLPs): word embeddings
 - Computer Vision: Face processing
- General Framework : DNN latent spaces a good model for brain representations?
- Latent spaces : how do we get them?
- Testing our hypothesis: fMRI brain decoding

Example 1: NLP word embeddings

- Natural language processing (NLP):
 - Create a word embedding or latent space
 - Fairly low dimensional (e.g., 300 or 500 dimensional)
 - A word is represented by a vector in this space.
 - Vector operations make sense

vector \mathbf{x} defined as:	Example 1	Example 2
\mathbf{x} = Paris – France	Italy + \mathbf{x} = Rome	Japan + \mathbf{x} = Tokyo
$\mathbf{x} = \text{bigger} - \text{big}$	$\operatorname{cold} + \mathbf{x} = \operatorname{colder}$	quick + \mathbf{x} = quicker
$\mathbf{x} = \text{scientist} - \text{Einstein}$	Messi + \mathbf{x} = midfielder	Mozart + x = violinist
$\vec{x} = Cu - copper$	$\operatorname{zinc} + \mathbf{x} = \operatorname{Zn}$	gold + \mathbf{x} = Au
$\mathbf{x} = \mathrm{sushi} - \mathrm{Japan}$	Germany + \mathbf{x} = bratwurst	USA + \mathbf{x} = pizza

QUEEN – WOMAN + MAN = KING

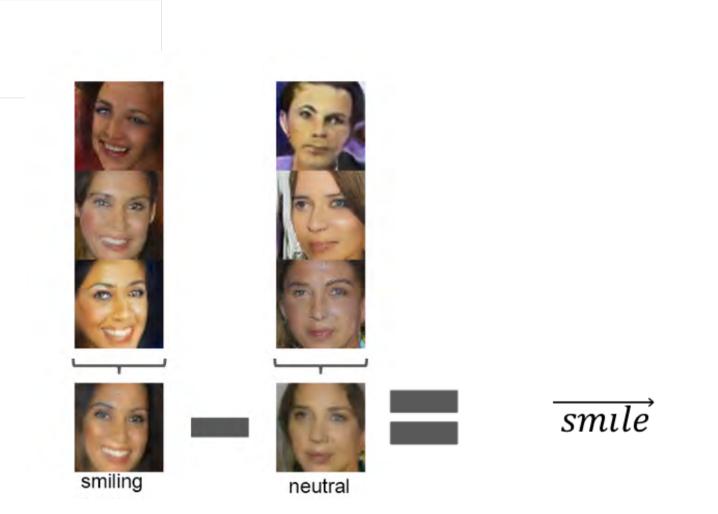
Example 2: Face latent spaces

- Computer Vision:
 - Example: a Generative Adversarial Net trained on celebrity faces
 - Creates a latent space, e.g., a 500 or 1000 dimensional space
 - A point/vector in this space corresponds to a face
 - GAN: generative model → generate a face from a vector
 - Perform operations on these vectors and look at the faces that are generated
 - Vector operations make sense?

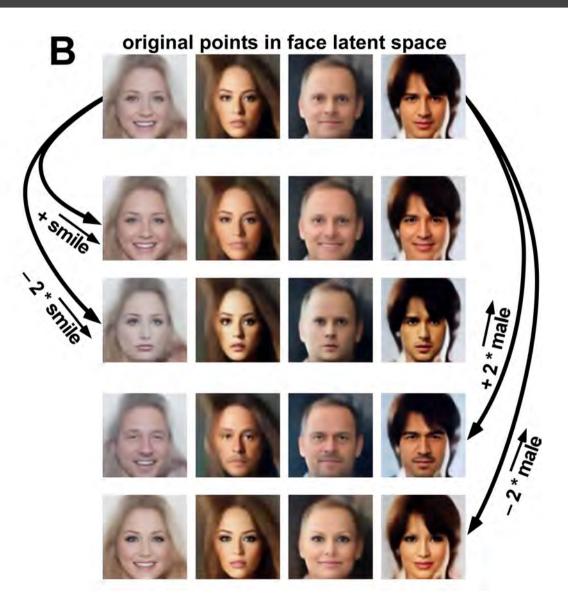
Latent space interpolations & extrapolations

arXiv:1609.04468 (2016).

Vector operations in a face latent space



Vector operations in a face latent space



DNN latent spaces : a good model for brain representations?

General Framework:

DNN latent spaces are a good model for brain representations.

- Clarification:
 - Not about one specific model, one particular dimensionality, one type of GAN....
 - A whole class of models might be similar to biological representations.
- Prediction:
 - DNN latent spaces allow for better fMRI brain decoding.

DNN Latent Spaces for fMRI Decoding

images viewed by subject in scanner

reconstructions from brain activity using:

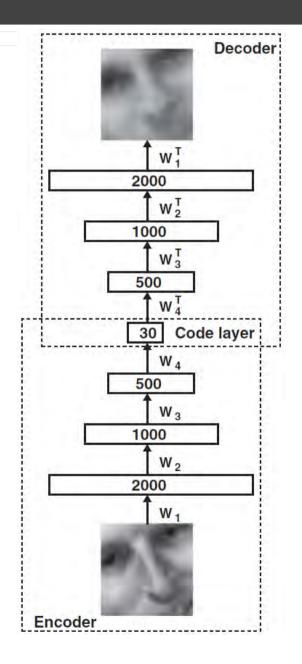
VAE/GAN model (1024 latent parameters)

PCA model (1024 latent parameters)

Cowen et al., 2014; Lee et al., 2016.

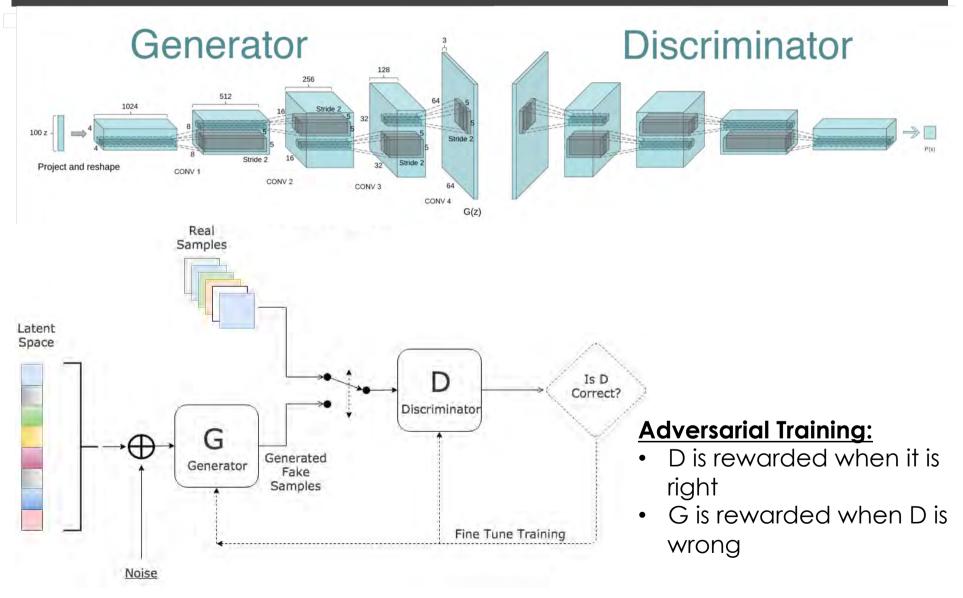
Successfully decode: face identity face gender imagined faces

Unsupervised generative models: Auto-encoders



- The whole network is trained (e.g. back-prop) to minimize the reconstruction loss (MSE between input/output images)
- It needs to learn a useful feature hierarchy
- The "code" defines a "**latent space**" of efficient dimensions.
- Problem: Loss defined in pixel space: encourages blurry samples.

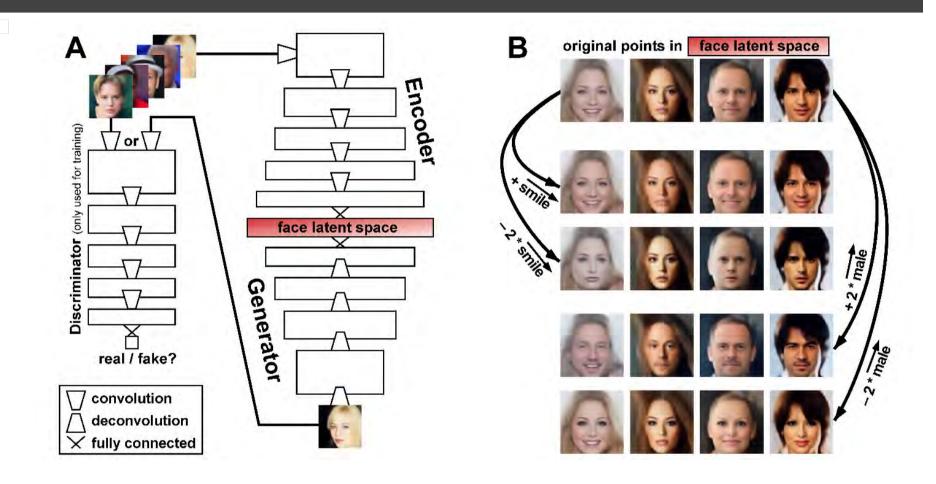
Generative Adversarial Networks (GAN)



Generative Adversarial Networks (GAN)

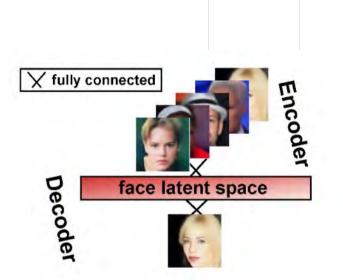
- These are **fake** faces (not real photographs but generated by the network)!
- https://thispersondoesnotexist.com/

VAEGAN



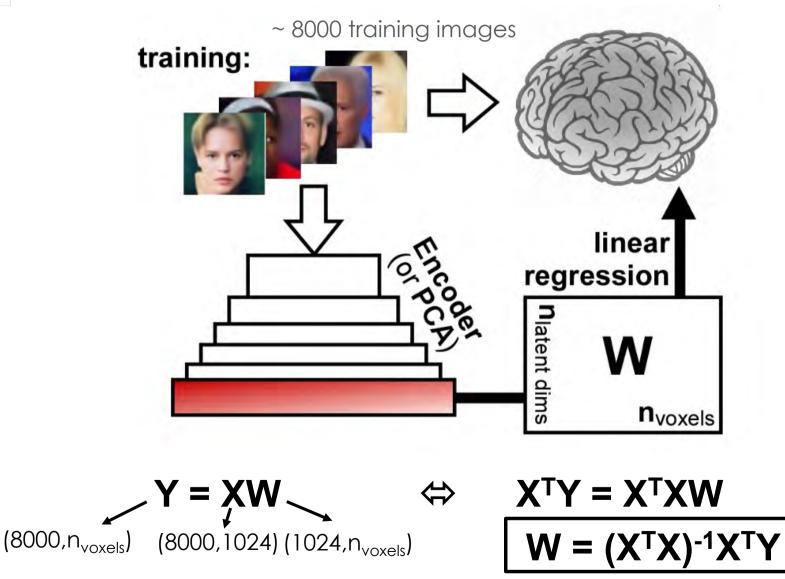
- The network is trained on a celebrity dataset (200,000 images).
- The "code" defines a "latent space" of 1024 efficient dimensions.
- After training, the weights are frozen and the discriminator network is dropped.

PCA model



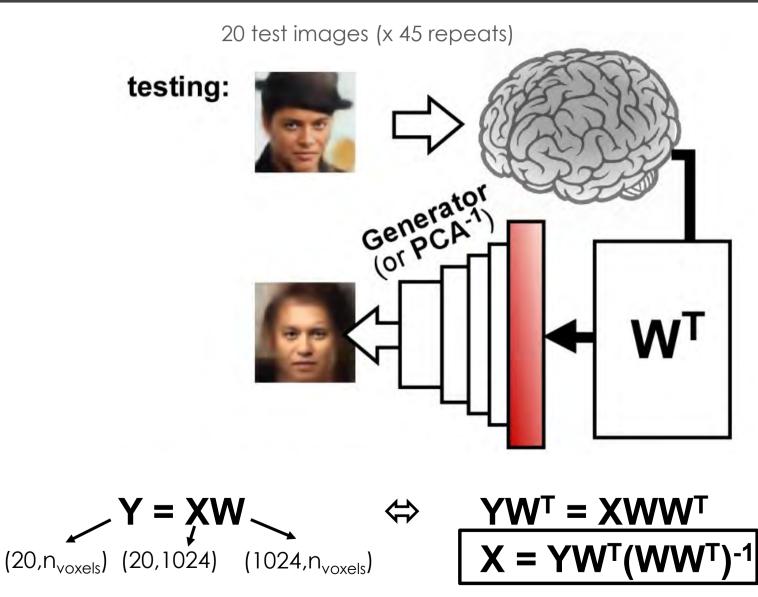
• Faces are encoded into a latent space of 1024 principal components (Cowen et al., 2014; Lee et al., 2016.).

Training a brain decoder (GLM)

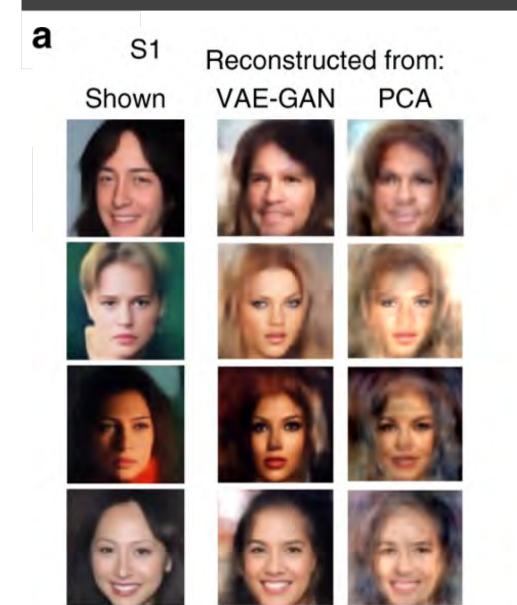


VanRullen & Reddy, 2019. Communications Biology

Testing the brain decoder (GLM)

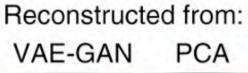


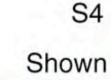
VanRullen & Reddy, 2019. Communications Biology



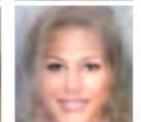
S2 Shown

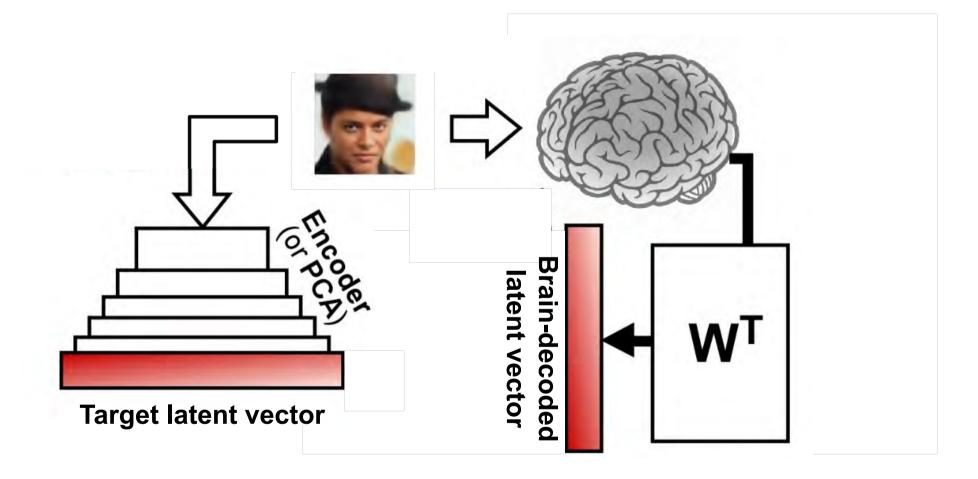
Reconstructed from: VAE-GAN PCA

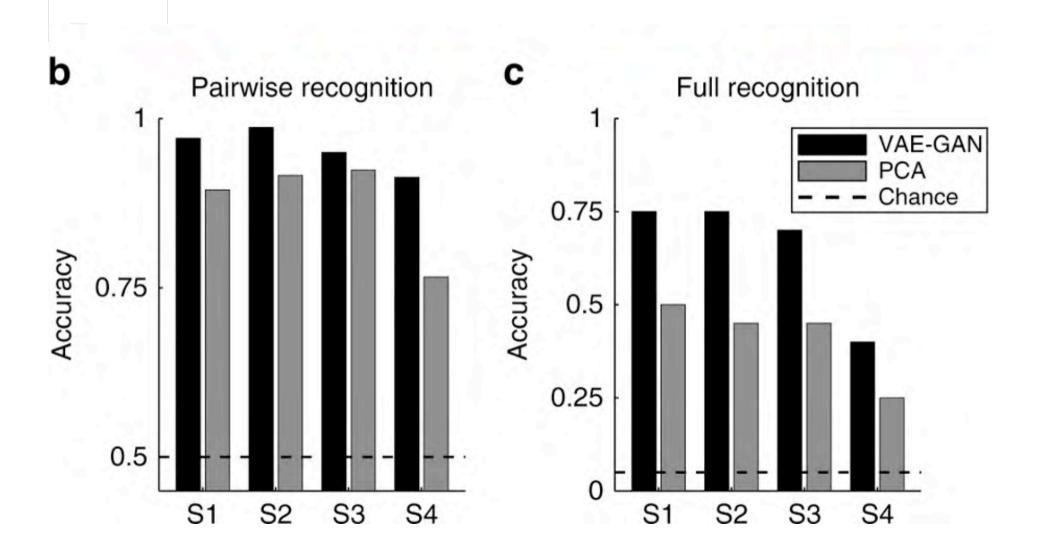


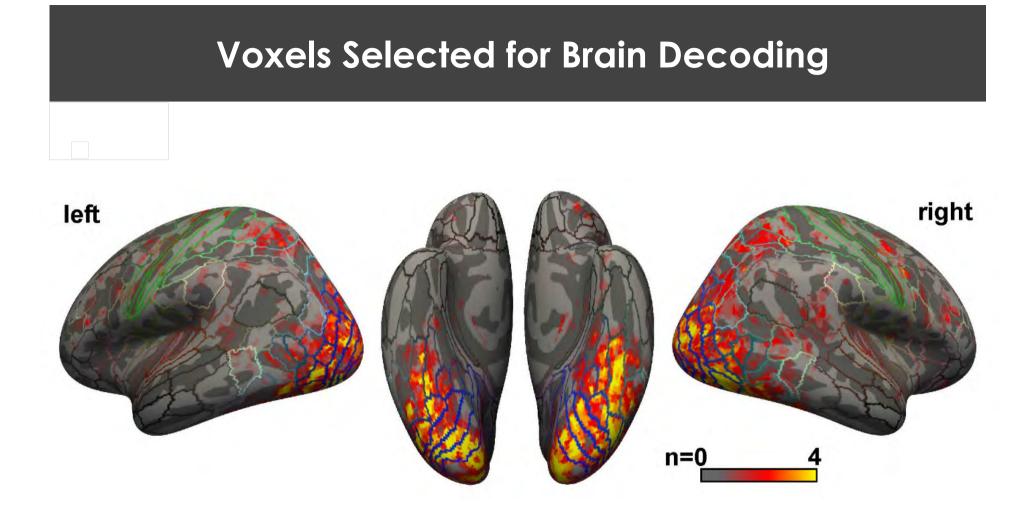


Reconstructed from: VAE-GAN PCA

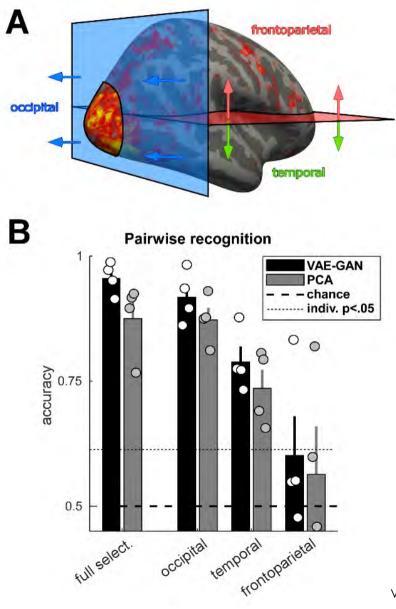




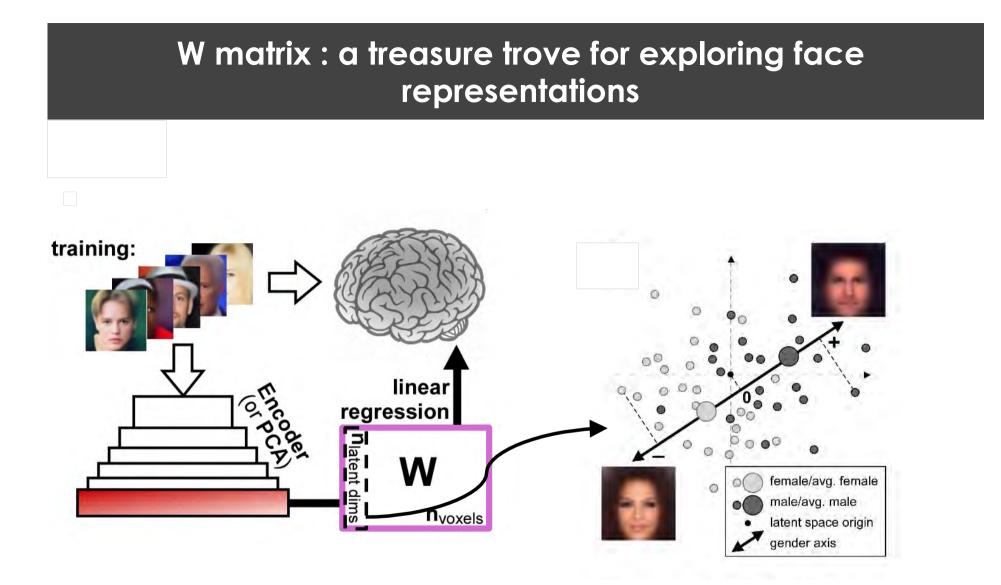




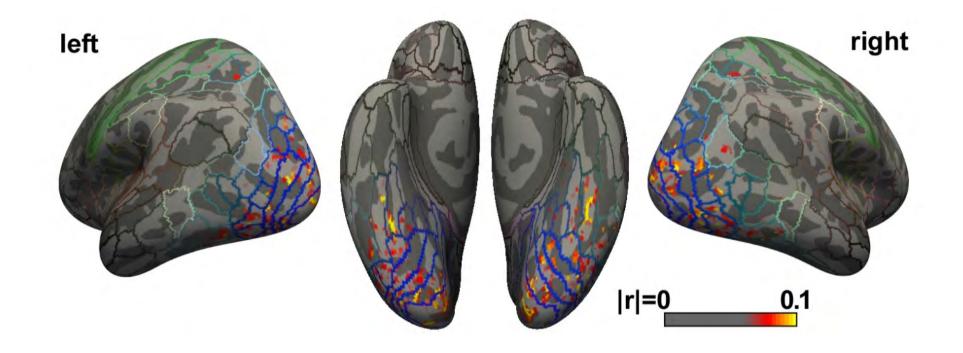
Contribution of Different Brain Regions



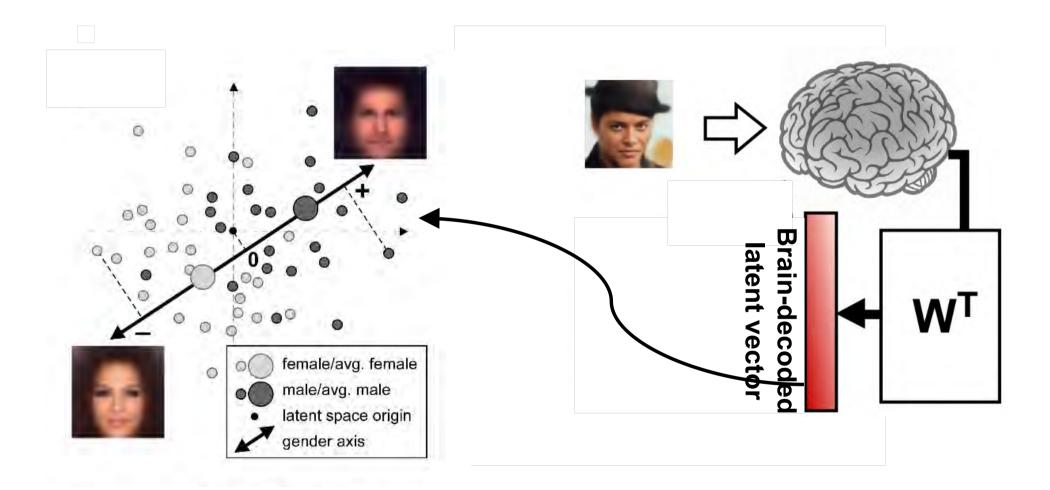
VanRullen & Reddy, 2019. Communications Biology



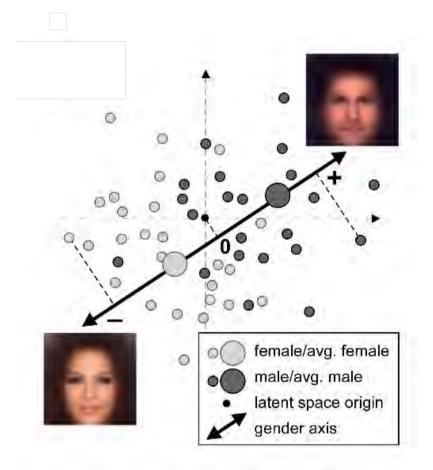
Gender activation map

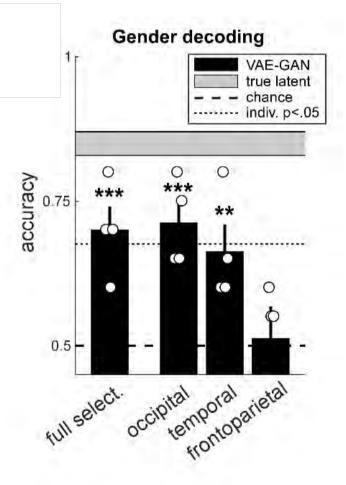


W matrix : a treasure trove for exploring face representations

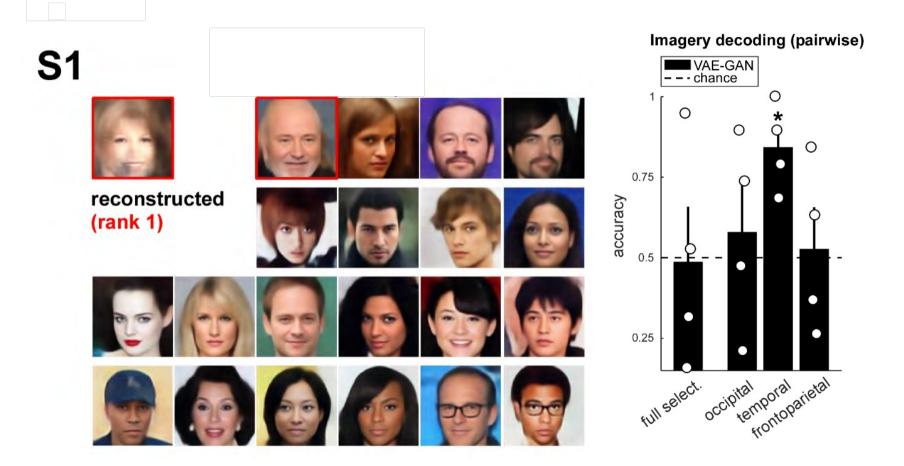


Gender Classification





Imagery Decoding



Conclusions

- Superior decoding and reconstructions for face identity, face gender, and imagined faces in the VAEGAN latent space
 - Compared to the PCA space
 - Compared to the state-of-the-art in the literature
 - ⇒ The VAEGAN latent space is a better representation space for linear brain decoding of faces.
- The VAEGAN latent space (and similar network spaces) is topologically similar to the face space in the brain?
 - ⇒ Both the artificial and biological neural nets "unfold" the complexity of the face representation space, making it more linear (e.g., DiCarlo & Cox, 2007).

