EcologHear

« [...] The goal of EcologHear is to understand how people experience ecosystem biodiversity through sounds and to use this knowledge to improve well-being in noisy environments. [...] »

<u>Ecological Hear</u>ing: Designing soundscapes through human auditory perception of ecosystem biodiversity

Listening to polluted soundscapes has a negative impact on health correlation with stress, stroke, obesity (de Paiva, Cardoso, Rodrigues, 2015; Murphy & King, 2022)

Listening to natural soundscapes has a positive impact on health mental health, well-being (Buxton et al., 2021, 2024; Ratcliff et al., 2021; Aletta et al., 2018)

Soundscapes acoustic organisation: insights from sound ecology

How the brain process soundscape is largely unknown!

Figure 6a. Spectro-Temporal modulation representations models primary auditory cortex receptive fields CNN layers model auditory cortex activity

6b. The auditory cortex representations are well modeled by deep convolutional neural networks (Kell et al., 2018)

Objective 2: UNDERSTANDING I will deciphear the behavioral and neural bases of soundscape's biodiversity perception

preliminary results

Two fMRI pilots:

- Spatialization x (biophony x geophony x anthropophony)
- 3 biodiversity gradients

Figure 7. Pilot fMRI experiment suggests specific cerebral networks specific to soundscapes, here the contrast between biophony and anthropophony

Deliverables:

• neural markers of soundscapes biodiversity and well-being

Objective 2: UNDERSTANDING I will deciphear the behavioral and neural bases of soundscape's biodiversity perception

preliminary results

Two fMRI pilots:

- Spatialization x (biophony x geophony x anthropophony)
- 3 biodiversity gradients

Figure 7. Pilot fMRI experiment suggests specific cerebral networks specific to soundscapes, here the contrast between biophony and anthropophony

Deliverables:

• neural markers of soundscapes biodiversity and well-being

preliminary results

A HUGE thanks to Thierry, Régis, Pascal & Centre IRM!

preliminary results

7 participants scanned | 2 participants analyzed sensimetrics + hearing protections

Contrasts:

- Biophony vs. Other

- Anthropophony vs. Other

RSA:

« which voxel has an activation that correlates with the biodiversity gradient »

A HUGE thanks to Thierry, Régis & Pascal & Centre IRM!

Spatialization x biophony x geophony x anthropophony

Biophony vs. Other

Sub #01

biophony vs. other

Pilot on one subject

Contrast

(p < 10⁻₅)

Contrasts:

- Biophony vs. Other
- Anthropophony vs. Other

RSA: « which voxel has an activation that correlates with the biodiversity gradient »

Overlap with experience 1

3 synthetic biodiversity gradients

low biodiversity

preliminary results

high biodiversity

A HUGE thanks to Thierry, Régis & Pascal & Centre IRM!

Spatialization x biophony x geophony x anthropophony

Contrasts:

- Biophony vs. Other
- Anthropophony vs. Other

preliminary results

3 synthetic biodiversity gradients low biodiversity

high biodiversity

RSA:

« which voxel has an activation that correlates with the biodiversity gradient » Overlap with experience 1

A HUGE thanks to Thierry, Régis & Pascal & Centre IRM!

Contrasts:

- Biophony vs. Other
- Anthropophony vs. Other

preliminary results

3 synthetic biodiversity gradients low biodiversity

high biodiversity

RSA:

« which voxel has an activation that correlates with the biodiversity gradient » Overlap with experience 1

A HUGE thanks to Thierry, Régis & Pascal!

RDM model

high biodiv

preliminary results

RSA:

« which voxel has an activation that correlates with the biodiversity gradient » Overlap with experiment 1