

Imaging metabolic and structural vulnerability in brain diseases: Beyond proton MR

Wafaa Zaaraoui, PhD

CNRS Researcher

Centre de Résonance Magnétique Biologique et Médicale (CRMBM)

Aix-Marseille Université

Marseille, France

Director: Dr Monique Bernard Deputy director: Pr Maxime Guye

Innovative MRI methods for the exploration of cardiovascular, musculoskeletal, central nervous systems

CRMBM: pre-clinical facilities

Bruker Pharmascan® 70/16

Bruker 500WB Avance 11.75T

RUKEF

Multinuclear high field MRI/MRS systems for small animal *in vivo* imaging studies equipped with radiofrequency probes for body, brain, spinal cord, muscle and cardiovascular studies.

Multinuclear high resolution MR spectrometers for perfused organs, biological fluids equipped with 5mm, 100mm and 20 mm multinuclear probes

Physiological Monitoring

MR-compatible rat and mouse monitoring and gating systems are avalaible for all MR experiments

Several home-built cradles were specifically designed for the strictively non invasive functional investigation of rat and mouse muscle with 1H/31P coils included

Animal Facility

The platform includes animal facilities with space to prepare the rats and mice for MR exams, an equipped surgery room and a wide assortment of ancillary equipment, i.e. anesthesia machines, infusion pumps, heating pads.

Biology and Biochemistry lab

CRMBM - CEMEREM: clinical facilities (100% research)

Clinical MRI

3T Vida Siemens

7T Terra Siemens CE approved

Physiological Monitoring

For all MR scanners:

- MR-compatible physiology monitoring and gating systems
- MR-compatible automatic contrast agent injectors
- Dedicated MR compatible ergometers (home-built or commercial)

Clinical Department

Accreditation of CEMEREM for human research by ARS (Agence Régionale de Santé)

CEMEREM under responsability of a medical doctor head of CEMEREM clinical department Timone Hospital

All protocols submitted to appropriate ethic committee agreements (CPP comité de protection des personnes)

The Central Nervous System team with 4 groups

Development and application of advanced MRI/MRSI methods and contrasts to better understand, monitor and treat neurological/psychiatric diseases

Increasing knowledge on multicontrast MRI and addressing methodological challenges at high (3T) and ultra high (7T) field strengths for clinical neuroscience

https://crmbm.univ-amu.fr/research/teams/central-nervous-system/

https://crmbm.univ-amu.fr/topic/brain_imaging/

Research Works

PRINCIPAL INVESTIGATOR : WAFAA ZAARAOUI

The brain imaging group aims at developing new MR biomarkers at high (3T) and ultra-high (7T) fields to characterize the anatomy, the microstructure, the meso-scale network organization, the metabolism and the homeostasis of the brain. The objectives are to push forward the limits of brain imaging using the added value of UHF MRI and counteracting the pitfalls, focusing on improved spatial resolution to characterize anatomy and function of complex small size gray matter structures or cortical layers. We also contribute to the advances of multimodal UHF MRI to characterize brain connectivity, and we work at rendering UHF X-nuclei MRI/MRSI usable in clinical compatible protocols.

Group Members:

- Leader: Wafaa Zaaraoui (CR CNRS)
- Jean-Philippe Ranjeva (PR Neurosciences)
- Maxime Guye (PU-PH Biophysics, AMU/APHM)
- Adil Maarouf (MCU-PH, Neurology, AMU/APHM)
- Jan-Patrick Stellmann (MCU-PH, Radiology, AMU/APHM)
- Aude-Marie Grapperon (PH Neurology, APHM)
- Yann le Fur (IR CNRS)
- Hugo Dary (IR CNRS)

Post-Doctoral researchers :

- Penelope TILSLEY
- Tangi Roussel
- Mohamed Mounir El MENDILI
- Roy Haast

PhD students :

- Kushboo PENJABI
- Coleen ROGER
- Maëva Cotinat
- Lucas Gauer

Multimodal and multicontrast brain imaging @ 3T & 7T

Multimodal MRI protocol @ CRMBM-CEMEREM

9

Sodium MRI: in vivo marker of sodium homeostasis

Sodium MRI provides information on:

- Function/viability of cells
- Excitability of cells
- Early marker in many brain disease processes

Reviews: Madelin et al, JMRI 2013; Shah et al, NMR Biomed 2016; Petracca et al, NMR in Biomed 2016; Thulborn, Neuroimage 2018

Sodium MRI in Multiple Sclerosis: Why?

Increase of [Na]_{intracellular} involved in processes leading to neurodegeneration

²³Na has the most favorable properties for MRI after ¹H

	¹ H	²³ Na
Spin quantum number	1/2	3/2
Gyromagnetic ratio $oldsymbol{\gamma}$ (MHz/T)	42.58	11.26
Sensitivity at constant field per nucleus αv^3 .I (I+1)	1	0.0925
In vivo concentration of nucleus (mol/kg)	85.6	0.05
SNR relative to ¹ H of tissue water	1	2x10 ⁻⁴

Adapted from Bottomley, Encyclopedia of MR 2012

²³Na has the most favorable properties for MRI after ¹H

	¹ H	²³ Na
Spin quantum number	1/2	3/2
Gyromagnetic ratio $oldsymbol{\gamma}$ (MHz/T)	42.58	11.26
Sensitivity at constant field per nucleus $\alpha \nu^3$.I (I+1)	1	0.0925
In vivo concentration of nucleus (mol/kg)	85.6	0.05
SNR relative to ¹ H of tissue water	1	2x10 ⁻⁴

Adapted from Bottomley, Encyclopedia of MR 2012

Challenges

=> Very low sensitivity of ²³Na MRI signal (=1/20 000 signal ¹H)

=> Very fast transverse relaxation time (T_2 ²³Na < 2ms)

²³Na has the most favorable properties for MRI after ¹H

	¹Н	²³ Na
Spin quantum number	1/2	3/2
Gyromagnetic ratio $oldsymbol{\gamma}$ (MHz/T)	42.58	11.26
Sensitivity at constant field per nucleus $\alpha \nu^3$.I (I+1)	1	0.0925
In vivo concentration of nucleus (mol/kg)	85.6	0.05
SNR relative to ¹ H of tissue water	1	2x10 ⁻⁴

Adapted from Bottomley, Encyclopedia of MR 2012

NMR properties of spin 3/2

- Electric quadrupolar moment (eQ)
- Strong interaction with surrounding electric field gradients (EFG)
- **Residual quadrupolar interaction** = main process of relaxation
- **Biexponential T2** depending on *motional regime* and *anisotropy*

- High or ultra-high field MR system
- RF capabilities for X-nuclei (multinuclear option) -
- Strong gradient strengths and high slew rates
- MRI sequence dedicated for ultra-short echo-time (UTE) => not commercial
- Adapted coils for ²³Na
- Increase voxel size (lower spatial resolution (3-5mm)³) to increase SNR

Sodium MRI: Methods development

Total Sodium Concentration (TSC)

Intra-cellular (85% vol / [Na] ≈ 15mM) Extra-cellular (12% vol / [Na] ≈ 140mM) Vascular (3% vol / [Na] ≈ 140mM)

TE= 200µs TR=120ms 17000 projections (3.6mm)³ 34 min

Zaaraoui et al, Radiology 2012

Sodium MRI in Multiple Sclerosis

Zaaraoui et al, Radiology 2012; Maarouf et al, MAGMA 2014; Maarouf et al, Neurology 2017; ₁₈ Donadieu et al, MSJ 2019; Maarouf et al, MSJ 2022

Sodium MRI in Multiple Sclerosis

Radiology

Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis: A Cross-sectional ²³Na MR Imaging Study¹

Parameter	Patients with Early RR MS ($n = 14$)	Patients with Advanced RR MS ($n = 12$)
Age (y)	33 (24–52)	40 (23–53)
No. of women Disease duration (mo)	11 14 (8–48)	10 156 (60–360)

Bertrand Audoin, MD, PhD Armin M. Nagel, PhD Audrey Rico, MD Irina Malikova, MD Elisabeth Soulier, BSc Patrick Viout, BSc Sylviane Confort-Gouny, PhD Patrick J. Cozzone, PhD Jean Pelletier, MD, PhD Lothar R. Schad, PhD Jean-Philippe Ranjeva, PhD

Wafaa Zaaraoui, PhD Simon Konstandin, PhD

2012

2012

Radiology

Sodium MRI in Multiple Sclerosis

Wafaa Zaaraoui, PhD Simon Konstandin, PhD Bertrand Audoin, MD, PhD Armin M. Nagel, PhD Audrey Rico, MD Irina Malikova, MD Elisabeth Soulier, BSc Patrick Viout, BSc Sylviane Confort-Gouny, PhD Patrick J. Cozzone, PhD Jean Pelletier, MD, PhD Lothar R. Schad, PhD Jean-Philippe Ranjeva, PhD

Distribution of Brain Sodium Accumulation Correlates with NEU **Disability in Multiple Sclerosis:** A Cross-sectional ²³Na ADIOLOGY MR Imaging Study¹

Parameter	Patients with Early RR MS ($n = 14$)	Patients with Advanced RR MS ($n = 12$)
Age (y)	33 (24–52)	40 (23–53)
No. of women	11	10
Disease duration (mo)	14 (8–48)	156 (60–360)

Sodium MRI in Multiple Sclerosis

Radiology

Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis: A Cross-sectional ²³Na MR Imaging Study¹

Parameter	Patients with Early RR MS ($n = 14$)	Patients with Advanced RR MS ($n = 12$)
Age (y)	33 (24–52)	40 (23–53)
No. of woman	11	10
NO. OF WOITIEN	11	10
Disease duration (mo)	14 (8–48)	156 (60–360)

Wafaa Zaaraoui, PhD Simon Konstandin, PhD Bertrand Audoin, MD, PhD Armin M. Nagel, PhD Audrey Rico, MD Irina Malikova, MD Elisabeth Soulier, BSc Patrick Viout, BSc Sylviane Confort-Gouny, PhD Patrick J. Cozzone, PhD Jean Pelletier, MD, PhD Lothar R. Schad, PhD Jean-Philippe Ranjeva, PhD

2012

23Na

GM sodium concentrations

Sodium MRI in Multiple Sclerosis

Radiology

Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis: A Cross-sectional ²³Na MR Imaging Study¹

Parameter	Patients with Early RR MS ($n = 14$)	Patients with Advanced RR MS ($n = 12$)
Age (y)	33 (24–52)	40 (23–53)
No. of women	11	10
Disease duration (mo)	14 (8–48)	156 (60–360)

Wafaa Zaaraoui, PhD Simon Konstandin, PhD Bertrand Audoin, MD, PhD Armin M. Nagel, PhD Audrey Rico, MD Irina Malikova, MD Elisabeth Soulier, BSc Patrick Viout, BSc Sylviane Confort-Gouny, PhD Patrick J. Cozzone, PhD Jean Pelletier, MD, PhD Lothar R. Schad, PhD Jean-Philippe Ranjeva, PhD

2012

Advanced

RRMS

Early

RRMS

В Advanced RRMS > controls

Radiology

Sodium MRI in Multiple Sclerosis

Wafaa Zaaraoui, PhD Simon Konstandin, PhD Armin M. Nagel, PhD Audrey Rico, MD Irina Malikova, MD Elisabeth Soulier, BSc Patrick Viout, BSc

T₂w ¹H MRI T₁w ¹H MRI ²³Na MRI NEU ADIOLOGY

Parameter	Patients with Early RR MS ($n = 14$)	Patients with Advanced RR MS ($n = 12$)
Age (y)	33 (24–52)	40 (23–53)
No. of women	11	10
Disease duration (mo)	14 (8–48)	156 (60–360)

Bertrand Audoin, MD, PhD Sylviane Confort-Gouny, PhD Patrick J. Cozzone, PhD Jean Pelletier, MD, PhD Lothar R. Schad, PhD Jean-Philippe Ranjeva, PhD

2012

Distribution of Brain Sodium

A Cross-sectional ²³Na

MR Imaging Study¹

Accumulation Correlates with Disability in Multiple Sclerosis:

GM sodium concentrations

23

Magn Reson Mater Phy DOI 10.1007/s10334-013-0396-1

RESEARCH ARTICLE

2013 -

Topography of brain sodium accumulation in progressive multiple sclerosis

Adil Maarouf · Bertrand Audoin · Simon Konstandin · Audrey Rico · Elisabeth Soulier · Françoise Reuter · Arnaud Le Troter · Sylviane Confort-Gouny · Patrick J. Cozzone · Maxime Guye · Lothar R. Schad · Jean Pelletier · Jean-Philippe Ranjeva · Wafaa Zaaraoui

	All patients $(n = 20)$	$\begin{array}{l} \text{PPMS} \\ (n = 11) \end{array}$	$\begin{array}{l}\text{SPMS}\\(n=9)\end{array}$
Age (years)	47.5 [33–70]	48 [38–70]	47 [33–67]
Median [range]			
Gender	9M/11F	6M/5F	3M/6F
Disease duration (years)	10.4 [1.5–24]	4.5 [1.5–19]	14 [6-24]

Magn Reson Mater Phy DOI 10.1007/s10334-013-0396-1

RESEARCH ARTICLE

2013 -

Topography of brain sodium accumulation in progressive multiple sclerosis

Adil Maarouf · Bertrand Audoin · Simon Konstandin · Audrey Rico · Elisabeth Soulier · Françoise Reuter · Arnaud Le Troter · Sylviane Confort-Gouny · Patrick J. Cozzone · Maxime Guye · Lothar R. Schad · Jean Pelletier · Jean-Philippe Ranjeva · Wafaa Zaaraoui

	All patients $(n = 20)$	$\begin{array}{l} \text{PPMS} \\ (n = 11) \end{array}$	SPMS (n = 9)
Age (years)	47.5 [33–70]	48 [38–70]	47 [33–67]
Median [range]			
Gender	9M/11F	6M/5F	3M/6F
Disease duration (years)	10.4 [1.5–24]	4.5 [1.5–19]	14 [6-24]

Magn Reson Mater Phy DOI 10.1007/s10334-013-0396-1

RESEARCH ARTICLE

2013 -

Topography of brain sodium accumulation in progressive multiple sclerosis

Adil Maarouf · Bertrand Audoin · Simon Konstandin · Audrey Rico · Elisabeth Soulier · Françoise Reuter · Arnaud Le Troter · Sylviane Confort-Gouny · Patrick J. Cozzone · Maxime Guye · Lothar R. Schad · Jean Pelletier · Jean-Philippe Ranjeva · Wafaa Zaaraoui

	All patients $(n = 20)$	$\begin{array}{l} \text{PPMS} \\ (n = 11) \end{array}$	$\begin{array}{l}\text{SPMS}\\(n=9)\end{array}$
Age (years)	47.5 [33–70]	48 [38–70]	47 [33–67]
Median [range]			
Gender	9M/11F	6M/5F	3M/6F
Disease duration (years)	10.4 [1.5-24]	4.5 [1.5–19]	14 [6-24]

Magn Reson Mater Phy DOI 10.1007/s10334-013-0396-1	
RESEARCH ARTICLE	2013

Topography of brain sodium accumulation in progressive multiple sclerosis

Adil Maarouf · Bertrand Audoin · Simon Konstandin · Audrey Rico · Elisabeth Soulier · Françoise Reuter · Arnaud Le Troter · Sylviane Confort-Gouny · Patrick J. Cozzone · Maxime Guye · Lothar R. Schad · Jean Pelletier · Jean-Philippe Ranjeva · Wafaa Zaaraoui

	All patients $(n = 20)$	$\begin{array}{l} \text{PPMS} \\ (n = 11) \end{array}$	$\begin{array}{l}\text{SPMS}\\(n=9)\end{array}$
Age (years) Median [range]	47.5 [33–70]	48 [38–70]	47 [33–67]
Gender Disease duration (years)	9M/11F 10.4 [1.5–24]	6M/5F 4.5 [1.5–19]	3M/6F 14 [6–24]

Clinical correlations

Sodium MRI and cognition in Multiple Sclerosis

Increased total sodium concentration in gray matter better explains cognition than atrophy in MS 2016

Adil Maarouf, MD Bertrand Audoin, MD, PhD Fanelly Pariollaud, PhD Sonya Gherib, MSc Audrey Rico, MD, PhD Elisabeth Soulier Sylviane Confort-Gouny, PhD Maxime Guye, MD, PhD Lothar Schad, PhD Jean Pelletier, MD, PhD Jean Philippe Ranjeva, PhD

Wafaa Zaaraoui, PhD

- **58 RRMS** (disease duration \leq 10 y)
- **31** age and sex matched **controls**
- 37 cognitively preserved (CP)

21 cognitively impaired (CI)

Battery) (2 tasks < 2SD)

Sodium MRI and cognition in Multiple Sclerosis

Increased total sodium concentration in gray matter better explains cognition than atrophy in MS 2016

Adil Maarouf, MD Bertrand Audoin, MD, PhD Fanelly Pariollaud, PhD Sonya Gherib, MSc Audrey Rico, MD, PhD Elisabeth Soulier Sylviane Confort-Gouny, PhD Maxime Guye, MD, PhD Lothar Schad, PhD Jean Pelletier, MD, PhD Jean-Philippe Ranjeva,

PhD Wafaa Zaaraoui, PhD 89 subjects were enrolled in the study: Cognitive evaluation (Brief Repeatable

- **58 RRMS** (disease duration \leq 10 y)
- 31 age and sex matched controls

37 cognitively preserved (CP)

21 cognitively impaired (CI)

Battery) (2 tasks < 2SD)

Stepwise regression model

- ➤ age
- disease duration
- GM sodium concentration
- NAWM sodium concentration
- ➢ GM fraction
- Brain parenchymal fraction

Sodium MRI and cognition in Multiple Sclerosis

Increased total sodium concentration in gray matter better explains cognition than atrophy in MS 2016

Adil Maarouf, MD Bertrand Audoin, MD, PhD Fanelly Pariollaud, PhD Somya Gherib, MSc Audrey Rico, MD, PhD Elisabeth Soulier Sylviane Confort-Gouny, PhD Maxime Gouye, MD, PhD Lothar Schad, PhD Jean Philippe Ranjeva,

PhD <mark>Wafaa</mark> Zaaraoui, PhD 89 subjects were enrolled in the study: Cognitive evaluation (Brief Repeatable

- **58 RRMS** (disease duration \leq 10 y)
- 31 age and sex matched controls

37 cognitively preserved (CP)

21 cognitively impaired (CI)

Battery) (2 tasks < 2SD)

Stepwise regression model

- age
- → disease duration
- GM sodium concentration
- ➤ NAWM sodium concentration
- → GM fraction
- → Brain parenchymal fraction

ROC analyses GM TSC

- Se = 76%
- Sp = 71%
- AUC = 0.73

Sodium MRI and cognition in Multiple Sclerosis RMBM-CEMEREM UMR 7339

Increased total sodium concentration in gray matter better explains cognition than atrophy in MS

Adil Maarouf, MD Bertrand Audoin, MD,

PhD Fanelly Pariollaud, PhD Sorava Gherib, MSc Audrey Rico, MD, PhD Elisabeth Soulier Sylviane Confort-Gouny, PhD Maxime Guye, MD, PhD Lothar Schad, PhD Jean Pelletier, MD, PhD Jean-Philippe Ranjeva, PhD Wafaa Zaaraoui, PhD

Sodium MRI map at the individual level

MULTIPLE SCLEROSIS JOURNAL MSJ

2022 -

Original Research Paper

Grey-matter sodium concentration as an individual marker of multiple sclerosis severity

Adil Maarout¹⁰, Bertrand Audoin¹⁰, Soraya Gherib, Mohamed Mounir El Mendili, Patrick Viout, Fanelly Pariollaud, Clémence Boutière, Audrey Rico, Maxime Guye, Jean-Philippe Ranjeva¹⁰, Wafaa Zaaraoui and Jean Pelletier

	BMS (<i>n</i> =21)	NBMS (<i>n</i> =25)	Healthy controls $(n=56)$	<i>p</i> -value (BMS vs NBMS)	<i>p</i> -value (BMS vs HC)	<i>p</i> -value (NBMS vs HC)
Age (years)	47.5 ± 8.1	46.7 ± 9.3	41.9 ± 12.9	0.86	0.22	0.21
Sex (F/M)	16/5	18/7	33/23	1	0.19	0.32
Clinical phenotype (Lublin and Reingold 1996)	21 BMS	16 RRMS 9 SPMS	n/a	n/a	n/a	n/a
Disease duration (years)	19.2 ± 5.6	18.3 ± 5.7	n/a	0.69	n/a	n/a
DMT	0	25	n/a	n/a	n/a	n/a

10 of 21 BMS (48%) and 19 of 25 NBMS (76%) patients showed GMSA (p = 0.05) affecting, respectively, 4.4 ± 9.6% of GM volume versus 5.4 ± 9.3%

Sodium MRI map at the individual level

MULTIPLE SCLEROSIS JOURNAL

2022 -

Original Research Paper

Grey-matter sodium concentration as an individual marker of multiple sclerosis severity

Adil Maarout⁽¹⁰⁾, Bertrand Audoin⁽¹⁰⁾, Soraya Gherib, Mohamed Mounir El Mendili, Patrick Viout, Fanelly Pariollaud, Clémence Boutière, Audrey Rico, Maxime Guye, Jean-Philippe Ranjeva⁽²⁰⁾, Wafaa Zaaraoui and Jean Pelletier

	BMS (<i>n</i> =21)	NBMS (<i>n</i> =25)	Healthy controls $(n=56)$	<i>p</i> -value (BMS vs NBMS)	<i>p</i> -value (BMS vs HC)	<i>p</i> -value (NBMS vs HC)
Age (years)	47.5 ± 8.1	46.7 ± 9.3	41.9 ± 12.9	0.86	0.22	0.21
Sex (F/M)	16/5	18/7	33/23	1	0.19	0.32
Clinical phenotype (Lublin and Reingold 1996)	21 BMS	16 RRMS 9 SPMS	n/a	n/a	n/a	n/a
Disease duration (years)	19.2 ± 5.6	18.3 ± 5.7	n/a	0.69	n/a	n/a
DMT	0	25	n/a	n/a	n/a	n/a

10 of 21 BMS (48%) and 19 of 25 NBMS (76%) patients showed GMSA (p = 0.05) affecting, respectively, 4.4 ± 9.6% of GM volume versus 5.4 ± 9.3%

	With GMSA $(n=10)$	Without GMSA ($n=11$)	p^{a}
Age (years)	46.2 ± 10.6	48.8 ± 5.0	0.75
Sex (F/M)	8/2	8/3	1
Cognitive impairment (Y/N)	5/5	2/9	0.14
Disease duration (years)	20.5 ± 7.5	18.1 ± 3.0	0.89
EDSS	1.6 ± 0.8	1.1 ± 0.5	0.04
MSFC	-0.09 ± 0.46	0.40 ± 0.23	0.01
T2LL (cm ³)	7.0 ± 2.8	3.6 ± 3.9	0.01
Cortical GM volume (cm ³)	579 ± 45	598 ± 26	0.17
Thalamic volume (cm ³)	13.6 ± 1.7	14.8 ± 0.9	0.02

	Odds ratio	Lower 95%	Upper 95%	<i>p</i> -value
(1) Parameters associa	ted with BMS status, at	fter stepwise regression		
Model				0.01
Thalamic volume	0.64	0.44	0.95	0.03
(2) Parameters associa	ted with 'truly' BMS st	atus, after stepwise regre	ssion	
Model				0.008
GMSA (no)	4.6	1.14	18.8	0.03
Thalamic volume	1.01	0.99	1.03	0.07

MULTIPLE Sclerosis Journal

Original Research Paper

Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain ²³Na-MRI and fast ¹H-MRSI study

2017

Maxime Donadieu, Yann Le Fur, Adil Maarouf, Soraya Gherib, Ben Ridley, Lauriane Pini, Stanislas Rapacchi, Sylviane Confort-Gouny, Maxime Guye, Lothar R Schad, Andrew A Maudsley, Jean Pelletier, Bertrand Audoin, Wafaa Zaaraoui and Jean-Philippe Ranjeva

3D-1H-EPSI sequence (see Donadieu, JMRI 2016): b) NAA f) myo-inositol

MULTIPLE SCLEROSIS JOURNAL

Original Research Paper

Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain ²³Na-MRI and fast ¹H-MRSI study

Maxime Donadieu, Yann Le Fur, Adil Maarouf, Soraya Gherib, Ben Ridley, Lauriane Pini, Stanislas Rapacchi, Sylviane Confort-Gouny, Maxime Guye, Lothar R Schad, Andrew A Maudsley, Jean Pelletier, Bertrand Audoin, Wafaa Zaaraoui and Jean-Philippe Ranjeva

3D-1H-EPSI sequence (see Donadieu, JMRI 2016): b) NAA f) myo-inositol

2017

GM TSC and NAA (β = -0.831; adjusted r2 = 0.341, p < 0.0032)

MULTIPLE Sclerosis Journal

Original Research Paper

Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain ²³Na-MRI and fast ¹H-MRSI study

2017

Maxime Donadieu, Yann Le Fur, Adil Maarouf, Soraya Gherib, Ben Ridley, Lauriane Pini, Stanislas Rapaechi, Sylviane Confort-Gouny, Maxime Guye, Lothar R Schad, Andrew A Maudsley, Jean Pelletier, Bertrand Audoin, Wafaa Zaaraoui and Jean-Philippe Ranjeva

3D-1H-EPSI sequence (see Donadieu, JMRI 2016): b) NAA f) myo-inositol

MULTIPLE Sclerosis Journal

Original Research Paper

Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain ²³Na-MRI and fast ¹H-MRSI study

2017

Maxime Donadieu, Yann Le Fur, Adil Maarouf, Soraya Gherib, Ben Ridley, Lauriane Pini, Stanislas Rapacchi, Sylviane Confort-Gouny, Maxime Guye, Lothar R Schad, Andrew A Maudsley, Jean Pelletier, Bertrand Audoin, Wafaa Zaaraoui and Jean-Philippe Ranjeva

3D-1H-EPSI sequence (see Donadieu, JMRI 2016): b) NAA f) myo-inositol

Intracellular sodium MRI?

Total Sodium Concentration (TSC)

Intra-cellular (85% vol / [Na] \approx 15mM) Extra-cellular (12% vol / [Na] \approx 140mM) Vascular (3% vol / [Na] \approx 140mM)

Thulborn et al, Radiology 1999

Intracellular sodium MRI?

Toxic shift reagents

Bansal et al, JMRI 1992

Do not penetrate cell membrane frequency offset in extracellular space

Inversion Recovery

Stobbe, Beaulieu, MRM 2005

Suppression of ²³Na signal from CSF

Triple Quantum Filtering

Petracca et al, Brain 2016

Intracellular sodium MRI: multi-echo approach

7T MRI in Marseille Hospital CRMBM-CEMEREM

Quantitative sodium maps at 7T

Intracellular sodium MRI: multi-echo approach

²³Na signal (au)

TE (ms)

Acquisition of 3D DA radial ²³Na MRI at 24 TE (0.2 - 71 ms)

TR=100ms resolution (3mm)³ 8 TE per run (3 runs) TA= 3 x 10 min

TE 0.20ms	TE 1.56ms	TE 4.28ms	TE 9.70ms	TE 11.06ms	TE 13.78ms
TE 19.20ms	TE 20.56ms	TE 23.28ms	TE 28.70ms	TE 30.06ms	TE 32.78ms
TE 38.20ms	TE 39.56ms	TE 42.28ms	TE 47.70ms	TE 49.06ms	TE 51.78ms
TE 57.20ms	TE 58.56ms	TE 61.28ms	TE 66.70ms	TE 68.06ms	TE 70.78ms

Ridley et al, Sci Reports 2018; El Mendili et al, ISMRM 2022

Ridley et al, Sci Reports 2018; El Mendili et al, ISMRM 2022

Ridley et al, Sci Reports 2018; El Mendili et al, ISMRM 2022

Multi-echoes ²³Na MRI at 7T: preliminary results in MS

	MS-CR	MS-PR	HC
	Complete Recovery: EDSS=0	Partial recovery: EDSS>0	
Number	19	14	25
Age (years)	31.68 ± 8.14	27.79 ± 6.44	31.92 ± 9.08
Gender	15F/4M	13F/1M	17F/8M
DD (years)	1.32 ± 1.32	1.55 ± 1.50	-
EDSS median [range]	0	1 [1-3]	-
T2-LL (ml)	1.91 ± 2.38	4.71 ± 4.88	-

El Mendili et al, ISMRM 2022 El Mendili et al, in preparation

Expected Benefits in MS

Assessing lesion activity and neurodegeneration

				p-value		
	Complete Recovery (CR)	Partial Recovery (PR)	Healthy Controls (HC)	CR vs PR	CR vs HC	PR vs HC
TSC (mM)	1 2 · · ·	<u> </u>	· · · · ·			
GM	51.09 ± 4.80	49.73 ± 5.21	50.07 ± 4.15	0.460	0.460	0.832
NAWM	42.78 ± 5.92	41.48 ± 6.30	41.37 ± 3.69	0.563	0.342	0.944
T2-lesions	50.70 ± 7.78	51.17 ± 7.23	"	0.650	<0.001	< 0.001
Signal fract	ion					
GM	0.471 ± 0.021	0.468 ± 0.047	0.464 ± 0.028	0.851	0.408	0.726
NAWM	0.579 ± 0.010	0.563 ± 0.019	0.574 ± 0.011	0.006	0.154	0.030
T2-lesions	0.571 ± 0.091	0.497 ± 0.085	"	0.042	0.860	< 0.001
T1-RT (ms)						
GM	1899.1 ± 31.7	1870.5 ± 137.0	1887.3 ± 43.5	0.398	0.333	0.577
NAWM	1304.0 ± 32.3	1341.4 ± 88.8	1277.7 ± 30.9	0.111	0.010	0.003
T2-lesions	1663.4 ± 146.9	1747.4 ± 160.3	"	0.150	<0.001	<0.001
FA						
NAWM	0.419 ± 0.024	0.426 ± 0.022	0.437 ± 0.012	0.432	0.002	0.037
T2-lesions	0.354 ± 0.031	0.334 ± 0.029	"	0.092	<0.001	<0.001
$MD^{\#}$						
NAWM	5.315 ± 0.271	5.411 ± 0.225	5.178 ± 0.124	0.315	0.032	< 0.001
T2-lesions	6.652 ± 0.677	7.201 ± 0.699	"	0.043	< 0.001	< 0.001

Values are expressed in mean ± SD. FA, fractional anisotropy; GM, grey matter; NAWM, normal appearing white matter; MD, mean diffusivity, TSC, total sodium concentration.

⁺General linear model. "T2-lesions in MS patients were compared with NAWM in HC. $\# \times 10^{-4} \text{ mm}^2/\text{s}$.

Better discrimination between Complete Recovery and Partial Recovery patients using **f**

El Mendili et al, ISMRM 2022 El Mendili et al, in preparation

Dynamic multi-echoes sodium MRI

Bydder et al, Neuroimage 2018

Sodium signal variations in regions with positive BOLD response

Activation of the controlateral motor areas (right-hand motor task)

52

- ²³Na MRI is feasible to study clinical brain applications
- It benefits from high and ultra-high magnetic field
- ²³Na MRI provides onic/metabolic information: direct window into on cells functionality

- ²³Na MRI is feasible to study clinical brain applications
- It benefits from high and ultra-high magnetic field

- ²³Na MRI provides onic/metabolic information: direct window into on cells functionality
- Increased TSC in the brain is consistently found in patients with multiple sclerosis
- Multiple phenomena involved in the increase of TSC
 - Different in different compartments
 - Acute lesions: inflammation, oedematous accumulation of interstitial fluid and swelling
 - Chronic lesions: microglial inflammation ? virtual axonal hypoxia and loss, other
 - Normal-appearing brain tissue: virtual axonal hypoxia and loss, small increases in extracellular space, excito-toxicity?
 - Variable over time
 - Present at onset of disease
 - Increase with duration of disease and disability
 - Less pronounced but more compartmentalised in patients with progression

Conclusions

Μι	ultiple Sclerosis		Maarouf et al. MSJ 2022, Collorone et al. Brain 2021, Weber et al. MSRD 2021, Eisele et al. MSRD 2019, Grist et al. JNS 2018, Donadieu et al. MS 2019, Huhn et al. JNS 2017, Eisele et al. J Neuroimag 2017, Maarouf et al. Neurology 2017, Petracca et al. Brain 2016, Eisele et al. MS 2016, Petracca et al. NMR Biomed 2016, Gnahm et al NI 2015, Maarouf et al. Magma 2014, Inglese et al. MSRD 2013, Paling et al. Brain 2013, Zaaraoui et al. Radiology 2012, Paling et al J Neurol 2011, Inglese et al Brain 2010
Amyotrop	hic Lateral Sclero	sis 🕢	El Mendili et al, AJNR 2022, Grapperon et al. Radiology 2019
Huntin	ngton 🗴 👹		Reetz et al. Neuroimage 2012
Ра	arkinson	ALC: NO	Grimaldi et al. Front Neurol 2021
	Alzheim	er 👧	Haeger et al. AD 2021, Mohamed et al. In vivo 2021, Mellon et al. AJNR 2009
Bra	in tumors 🛛 🚱	NAT - NI	Mohamed et al. J Neuroimaging 2021, Regnery et al. Neuroimage Clin 2020, Shymanskaya et al. Mol Imag Biol 2020, Haneder et al. Neuroradiology 2015, Laymon et al. MRI 2012, Weber et al. Invest Radiol 2010, Bartha et al AJNR 2008, Boada et al. IEEE 2004, Ouwerkerk et al. Radiology 2003, Thulborn et al. MRM 1999,
	Stroke & CVD		Adlung et al. Cerebrovascular disease 2021, Neumaieer-Probst et al. Int J Stroke 2015, Shimizu et al. Neuroradiology 1993
	TI	BI	Grover et al. AJNR 2018,
	Migraine		Meyer et al. Eur Radiol 2019,
)	Epilepsy	9 Yr (1991) 120	Azilinon et al, HBM 2023, Ridley et al. NI 2017

Sodium MRI in Neurodegenerative diseases

Amyotrophic lateral sclerosis

Conclusions

Radiology

ORIGINAL RESEARCH • NEURORADIOLOGY

Quantitative Brain Sodium MRI Depicts Corticospinal Impairment in Amyotrophic Lateral Sclerosis

Aude-Marie Grapperon, MD • Ben Ridley, PhD • Annie Verschueren, MD • Adil Maarouf, MD, PhD • Sylviane Confort-Gouny, PhD • Etienne Fortanier, MD • Lothar Schad, PhD • Maxime Guye, MD, PhD • Jean-Philippe Ranjeva, PhD • Shahram Attarian MD, PhD • Wafaa Zaaraoui, PhD

From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.R.R., W.Z.); APHM, Höpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Höpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.R.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.). Received October 3, 2018; revision requested December 10; revision received April 19, 2019; accepted April 29. Address correspondence to W.Z. (small: updiz.astanoi@gimmi-smarf).

Supported by Assistance Publique Hôpitaux de Marseille (AORC junior 2014 program).

Grapperon et al, Radiology 2019

Parkinson's disease

ORIGINAL RESEARCH published: 09 September 2021 doi: 10.3389/fneur.2021.715618

Increased Sodium Concentration in Substantia Nigra in Early Parkinson's Disease: A Preliminary Study With Ultra-High Field (7T) MRI

Stephan Grimaldi^{1,2,3*}, Mohamed Mounir El Mendili^{2,3}, Wafaa Zaaraoui^{2,3}, Jean-Philippe Ranjeva^{2,3}, Jean-Philippe Azulay¹, Alexandre Eusebio^{1,4} and Maxime Guye^{2,3}

¹ APHM, Höpital Universitaire Timone, Department of Neurology and Movement Disorders, Marseille, France, ^{*} APHM, Höpital Universitaire Timone, CEMEREM, Marseille, France, ^{*} Aix Marseille Univ, CRMBM, CNRS, Marseille, France, ^{*} Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone, Marseille, France

Grimaldi et al, Front Neurol 2021

=> TSC increase in clinically relevant brain regions

Sodium MRI in Epilepsy

Conclusions

 Received: 3 May 2022
 Revised: 12 September 2022
 Accepted: 17 September 2022

 DOI: 10.1002/hbm.26102

RESEARCH ARTICLE

WILEY

Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy

Azilinon et al, HBM 2023

=> Chronic increase of TSC in epileptogenic regions during the interictal period in human epilepsy

CRMBM, CNRS, Aix-Marseille Université, Marseille, France

W Zaaraoui	M Guye
M El Mendili	S Confort-Gouny
A Maarouf	L Pini
AM Grapperon	C Coste
B Ridley	P Viout
JP Ranjeva	S Corella
S Gherib	V Gimenez
M Bydder	MP Ranjeva
R Dintrich	A Le Troter
M Donadieu	H Dary
M Azilinon	JP Stellmann
T Roussel	F Pariollaud
S Grimaldi	F Reuter
B Audoin	J Pelletier

wafaa.zaaraoui@univ-amu.fr

A Nagel Erlangen University, Germany

L Schad Heidelberg University, Germany

